BMS Supertranslation Symmetry Implies Faddeev-Kulish Amplitude

Sangmin Choi

April 14, 2018

Great Lakes Strings 2018

Based on...

"BMS supertranslation symmetry implies Faddeev-Kulish amplitude"

JHEP 1802 (2018) 171, arXiv:1712.04551

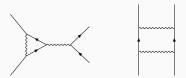
Sangmin Choi, Ratindranath Akhoury

Background

Consider a 2-to-2 scattering amplitude $\langle q_1,q_2|\mathcal{S}|p_1,p_2\rangle$ in QED.

At lowest order, all is well:

With loops, diagrams have infrared divergences.



These divergences exponentiate, and the amplitude vanishes in the limit where the infrared regulator is removed:

$$\langle q_1, q_2 | \mathcal{S} | p_1, p_2 \rangle = 0$$

Background

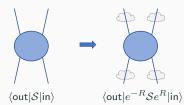
Traditionally, this problem has been circumvented at the level of *cross section* via the Bloch-Nordsieck method; the *S-matrix elements* are left ill-defined.

An alternative: replace Fock states with the dressed (Faddeev-Kulish, FK) states:

$$|\mathbf{p}\rangle \quad \rightarrow \quad e^{R(\mathbf{p})} |\mathbf{p}\rangle \,,$$

where $R(\mathbf{p})$ is an anti-Hermitian operator which, for gravity, is given as

$$R(\mathbf{p}) = \int_{\text{soft}} \frac{d^3k}{(2\pi)^3(2\omega_{\mathbf{k}})} f^{\mu\nu}(\mathbf{p},\mathbf{k}) \left(a^{\dagger}_{\mu\nu}(\mathbf{k}) - a_{\mu\nu}(\mathbf{k}) \right).$$



Amplitudes built using FK states (FK amplitudes) are free of infrared divergences.

Motivation

Gauge/gravity theories have asymptotic symmetries:

- Large gauge symmetry for QED.
- BMS symmetry for gravity.

Charges of asymptotic symmetries should be conserved:

$$\langle \mathsf{out} | [Q, \mathcal{S}] | \mathsf{in} \rangle = 0.$$

However, Fock states are not charge eigenstates. Scattering amplitudes built with Fock states violate charge conservation and therefore vanish – this is reflected in infrared divergences. [Kapec, Perry, Raclariu, Strominger '17]

* Recall that FK amplitudes are free of infrared divergence – this hints at a close relation between the FK states and the asymptotic symmetries. ([Gabai, Sever '16] for QED, [Choi, Kol, Akhoury '17] for gravity.)

BMS Supertranslation Charge

There is a BMS supertranslation charge Q(f) for each 2-sphere function $f = f(w, \bar{w})$.

$$Q(f) = Q_S(f) + Q_H(f)$$

The action of the hard charge Q_H on a Fock state is

$$Q_H |\mathbf{p}\rangle = -\int \frac{d^2w}{2\pi} \frac{(\epsilon^+(w, \bar{w}) \cdot p)^2}{p \cdot \hat{x}_w} D_{\bar{w}}^2 f(w, \bar{w}) |\mathbf{p}\rangle.$$

The soft charge Q_S is given as

$$Q_S = -\frac{1}{8\pi G} \int du \, d^2w \, \gamma_{w\bar{w}} N^{\bar{w}\bar{w}} D_{\bar{w}}^2 f(w, \bar{w}).$$

The Bondi news tensor $N^{\bar{w}\bar{w}}$ contains zero-mode graviton operators.

BMS Supertranslation Charge

The FK states are charge eigenstates of the BMS supertranslation:

$$Qe^{R(\mathbf{p})}|\mathbf{p}\rangle = C(\mathbf{p})e^{R(\mathbf{p})}|\mathbf{p}\rangle.$$

Charge conservation demands $\sum_{i \in \text{out}} C(\mathbf{p}_i) - \sum_{i \in \text{in}} C(\mathbf{p}_i) = 0$. Here $C(\mathbf{p}) \propto p$; conservation automatically follows from energy-momentum conservation.

In fact, any coherent state of the form,

$$\exp\left\{\int \frac{d^3k}{(2\pi)^3(2\omega_{\mathbf{k}})} N^{\mu\nu} (a^{\dagger}_{\mu\nu} - a_{\mu\nu})\right\} |\mathbf{p}\rangle,$$

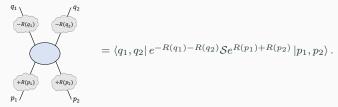
where $N^{\mu\nu}=O(1/\omega_{\mathbf{k}})$ is a charge eigenstate, and charge conservation demands

$$N_{\mathrm{out}}^{\mu\nu}-N_{\mathrm{in}}^{\mu\nu}=\sqrt{8\pi G}\left[\sum_{i\in\mathrm{out}}\frac{p_{i}^{\mu}p_{i}^{\nu}}{p_{i}\cdot k}-\sum_{i\in\mathrm{in}}\frac{p_{i}^{\mu}p_{i}^{\nu}}{p_{i}\cdot k}\right]$$

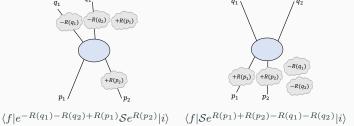
 \implies There exists a broader class of dressed states (containing the set of FK states) that conserve the supertranslation charge.

BMS Supertranslation Charge

A 2-to-2 FK amplitude looks like



Examples of other amplitudes that conserve supertranslation charge are:



But FK amplitudes are infrared-finite! Are the latter amplitudes also infrared-finite? ⇒ Conjectured to be true in [Kapec, Perry, Raclariu, Strominger '17].

Infrared-finiteness

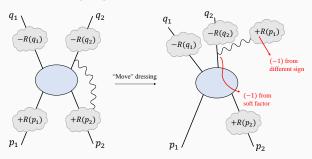
It turns out that they are!

We have an explicit formula for the leading term of a scattering amplitude with N (N') absorbed (emitted) virtual gravitons [Choi, Kol, Akhoury '17]:

$$(-1)^N \left[\prod_{r=1}^{N+N'} \int \frac{d^3k_r}{(2\pi)^3 (2\omega_r)} f_{\mu\nu} I^{\mu\nu,\rho_r\sigma_r} \right] \mathcal{J}_{\rho_1\sigma_1\cdots\rho_{N+N'}\sigma_{N+N'}}$$

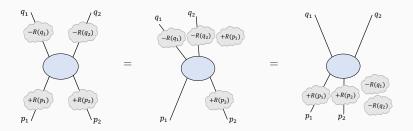
where $I^{\mu\nu,\rho\sigma}=\frac{1}{2}(\eta^{\mu\rho}\eta^{\nu\sigma}+\eta^{\mu\sigma}\eta^{\nu\rho}-\eta^{\mu\nu}\eta^{\rho\sigma})$, and $\mathcal{J}...$ is some complicated tensor.

The net effect of "moving" a dressing from the in-state to the out-state can be summarized in the following diagram:



Infrared-finiteness

"Moving" the dressing has no net effect on the leading term of the amplitude. Therefore,



Since FK amplitude is infrared-finite, all amplitudes that conserve BMS supertranslation charge are infrared-finite. This proves the conjecture of [Kapec, Perry, Raclariu, Strominger '17].

Summary

To summarize the main points:

- Conventional S-matrix elements vanish due to infrared divergences. This is a
 penalty for violating charge conservation of the asymptotic symmetries.
- FK amplitudes are well defined i.e. they do not exhibit infrared divergence.
- There thus is a close connection between asymptotic symmetries and FK states:
 The set of FK states is a subset of charge eigenstates that automatically conserve the charge of asymptotic symmetry.
- However, any amplitude that conserves the charge (and therefore is non-zero) is equivalent to the corresponding FK amplitude at the leading order.