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1 Introduction

Tracing back to the flow of history, as the author knows it the first chaotic phenomenon emerged when
Poincaré studied 3-body problem around 1890s. In his works, he realized and pointed out that the
problem is no longer integrable, and moreover, the numerical solution depends extremely sensitively
on initial conditions. One may reference Ref. [1] for more elaboration. Later on in mid-20th century,
when Edward Lorenz tried to model the atmospheric problem using 3 coupled non-linear ordinary
differential equations [2], he discovered similar sensitivity to initial conditions, implying practical
impossibility to predict weather in a large enough amount of time. Therefore the quote by him goes
as

“When the present determines the future, but the approximate present does not approxi-
mately determine the future.”

Besides, he recognized that in phase space, the seemingly unpredictable trajectories do not scatter all
over the place. Instead, they actually approach a subspace, the attractor, of the whole possible state
space. With some effort, it can be shown that the dimension of such attractor lies between 2 and 3.
Moreover, the aforementioned sensitivity to initial condition manifests itself in terms of instability on
the attractor, and thus the attractor is dubbed the name strange.1

1The definition of strangeness here follows one in Ref. [4]. One can easily find different opinions in the literature, say
Ref. [5].
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Nowadays, we have realized more. In addition to the Hamiltonian dynamical systems raised above,
similar phenomena appear in many other models in the realm of quantitative science. The sim-
plest example may be the logistic map as a kindergarten model describing population growth, that
xn+1 = axn(1 − xn), where a determines the growth rate. It can be shown easily, at least at nu-
merical level, for most values of a > 3.6, the system is chaotic (and of course we have to specify
the meaning of chaotic more precisely in the following sections). More examples include, but are not
limited to, the double pendulum, Hénon map, that xn+1 = 1− ax2n + yn, yn+1 = bxn, and Chirikov
map, that pn+1 = pn −K sin θn, θn+1 = θn + pn+1. See Ref. [3].
The talk and this note is organized as follows. In the next section, we review some qualitative features
that are commonly related or adopted to be criteria of chaos. To be illustrative, we try to visualize
some of them in terms of (numerical solutions) for some concrete models. Next we introduce several
quantities that measure the extent of chaos including Lyapunov Exponent and Kolmogorov-Sinai (KS)
Entropy. In the final section, we give some comment to conclude the talk.
There are no doubt literatures on this subject, yet the author had a difficult time to find a single ref-
erence that fits into the structure and the size of the agenda here. Refs. [3–5] are comprehensive but
maybe a bit time-consuming.
A particularly good introduction (in my opinion) is the online lecture notes by Michael Cross:
http://www.cmp.caltech.edu/˜mcc/Chaos_Course/, from which the author have bor-
rowed many arguments.

2 Qualitative Features of Chaos

As the authors knows, despite lacking universal formal definitions, most chaotic systems have the
features that we will introduce shortly and their mathematical definitions are borrowed from Ref. [6].

2.1 Topological Transitivity

A map f mapping the spaceM→M is topologically transitive if for any pair of open sets U and V
inM, there exists a natural number N such that fN (U) ∩ V is non-empty.
An immediate outcome of this property is that for a chaotic system there is no innocent region in the
state space. For any point in the space, there is an actual trajectory that eventually comes arbitrarily
close to it.

2.2 Initial Condition Sensitivity

The map f fromM toM has sensitive dependence on initial conditions if there exists ε > 0 such
that for any x ∈M and any neighborhood B of x, there exists a y ∈ B and an integral number N 6= 0

such that ||fN (x), fN (y)|| > ε.
This property, sometimes dubbed as butterfly effect, is probably the most well-recognized feature of
chaos. In plain English, it means that there is some distance such that no matter how little we perturb
the system, there is some subset in our perturbation set differ from original trajectory at least by ε
after long enough time.

– 2 –

http://www.cmp.caltech.edu/~mcc/Chaos_Course/


Figure 1.

2.3 Periodic Orbit Density

This property is also referred as element of regularity. A system possess an element of regularity if
there exists a dense subset of periodic points inM. That is, for any x ∈ M, there is a point y that
continually iterates back arbitrarily close to original point x.

2.4 Attractors

In some systems, they contain additionally a structure called strange attractors. In those systems the
dynamics, or the map, has some points. Using the simplest xn+1 = f(xn) as the example, there are
some points in state or phase space that map them to themselves. They form an attractor set. Taking
the logistic map xn+1 = rxn(1 − xn) as a toy example. When r = 2, the attractor contains 1 point,
which is the fixed point of the map. When r = 3.2, the attractor contains 2 points. As r goes to 3.5,
it further bifurcates to 4 points. These attractors look regular, each of them containing finite points.
Nevertheless, the story becomes dramatic as r exceeds, say 3.57. The attractor becomes chaotic. It
seems to cover the whole space, but actually not quite does so. To study such complex geometric
structures, we try to characterize them by a non-integral dimension, and hence the name fractal. We
postpone the technical details to the next section. Figure 1 borrows the celebrated bifurcation diagram
from Wikipedia.

Nonetheless, in order to visualize some of these properties. Let us raise the classic Lorenz model as
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the example. The Lorenz model is defined by the following equations [2].

dX

dt
= −σX + σY (2.1)

dY

dt
= −XZ + rX − Y (2.2)

dZ

dt
= XY − bZ, (2.3)

with σ = 10, b = 8/3 and r = 28. Some visualizations are shown in figure 2.

As a short summary, we have introduced some general features that many people use to recognize
chaotic phenomena. Though being stated in a rather formal manner, they are still qualitative and we
will have to do more, which leads us to next section.
To see the necessity, the most common feature of chaos is the loss of predicability after long time
and the result looks random. However, it should be emphasized that it is not really random or noisy
compared to authentic randomly generated noise. Quite the contrary, it has some internal pattern if
we look at the solutions from a proper view point. Having some quantitative measures also helps us to
distinguish chaos from noise. A nice visual demonstration of such distinction can be found in Ref. [7].

3 Quantitative Measure of Chaos

In this section we will be studying some quantitative measures of chaos. Therefore, we should go
beyond qualitative classification and seek some measures that help us to quantify chaos. I think it
may be helpful first to introduce some more concepts.
Probability and invariant measure is one of them since we will talk about entropy shortly. From
empirical point of view, the probability is actually the relative frequency of the occurrences of repeated
trials. In the context here, we focus on the neighborhoods of the attractors in the state space. We divide
the space around into small cells (boxes) and the probability pi will be proportional to the times that
a trajectory visits a cell i. An immediate question follows that which trajectory we are referring to?
As we have been reminded again and again that a chaotic system is sensitive to where we start a
trajectory. In many chaotic system, it is known that pis actually do not depend on where we start the
trajectory on the attractor, and nor do they depend on the unit scale of coordinates. In this sense pi is
called an invariant distribution or measure. For some models, it can be written as pi =

∫
i dτ ρ(x) for

some probability density.
Given this distribution defined on state space, we are then able to define 2 kinds of average for a
quantity O(x) depending on the state space variable x. One is the time average

〈O〉t =
1

T

∫ T

0
dtO(x(t)) =

1

N

N∑
i=1

O(x(ti)), (3.1)
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Figure 2. The top panel shows the sensitivity to initial conditions. As we can see, the blue and brown trajectory
start with almost the name initial value, yet around t = 25 they become dramatically different. The bottom
panel depicts the attractor in Lorenz system.

while the other is the state space average

〈O〉p =

∫
dτ ρ(x)O(x) =

1

N ′

N ′∑
i=1

O(xi)pi. (3.2)

If these 2 calculations happen to yield the same result, the system is called ergodic.
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3.1 Lyapunov Exponent

One of the features that all chaotic systems embrace is, as we have mentioned repeatedly, sensitivity to
initial conditions. The Lyapunov exponent, or the characteristic exponent, is a quantity that rephrases
the statement.
To start with, let us first consider a discrete time one dimensional map xn+1 = f(xn). If we can
formulate such a quantity for this toy model, with some modification we should be able to generalize
it to more complicated systems.
Given this map, we may consider 2 initial values x0 and x′0, which become xN and x′N after N
iterations. The difference between these 2 trajectories is identified as

δxN = xN − x′N = fN (x0)− fN (x′0) '
dfN (x0)

dx
(x0 − x′0) =

dfN (x0)

dx
δx0. (3.3)

The derivative of composition map fN (x) = f(f(...f(x)...)) can be evaluated using chain rule.

dfN (x0)

dx
=

df(xN−1)

dx

df(xN−2)

dx
...

df(x0)

dx
. (3.4)

From such a product structure and an anstaz δxN = eλNδx0, we can define, for this simple model,

λ = lim
N→∞

1

N
log
∣∣∣dfN (x0)

dx

∣∣∣ = lim
N→∞

1

N

N−1∑
k=0

log
∣∣∣df(xk)

dx

∣∣∣. (3.5)

This starting point has an obvious and immediate extension. f can be regarded as a map f : Rn → Rn,
while x ∈ Rn. Denote the differential map ∂fi/∂xj = Tij . Then ∂(fN )i/∂xj becomes a matrix
product

TN (x) =
∂fN

∂x
= T (fN−1(x))...T (f(x))T (x). (3.6)

The next step is to extract some numbers out of this matrix. If the system is ergodic, Oseledec?s
multiplicative ergodic theorem then ensures the existence of the following limit.

lim
N→∞

((TN )TTN )1/2N = Λ. (3.7)

We erase the x dependence owing to the ergodic assumption. The logarithms of the eigenvalues of Λ

are Lyapunov exponents. Another intuitive approach is, for given initial point or time, we try to find
the normalized eigenvectors vi to TN . Then

λ(i) = lim
N→∞

1

N
log ||TNvi||. (3.8)

For general complex systems, there are technical details that we have to deal with. To have some taste,
let us take Arnold’s cat map as an example. Let x1 (mod 1) and x2 (mod 2) be the coordinates in state
space (2 torus). The cat map is defined as f : T 2 → T 2.

f

(
x1
x2

)
=

(
x1 + x2
x1 + 2x2

)
(mod 1). (3.9)
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This map is known to be chaotic. If we write δxN = δx0 e
λN . The Lyapunov exponent is the loga-

rithm of the larger eigenvalue of the matrix (
1 1

1 2

)
, (3.10)

which is

λ = log
1

2
(3 +

√
5). (3.11)

3.2 Kolmogorov-Sinai Entropy

Given the definition of pi, we are mimic what people have done in thermodynamics and information
theory to define an entropy

S = −
N∑
i=1

pi log pi. (3.12)

We, however, have to be careful about the meaning of this quantity. A choice of partition is made
when we define the probability pi.
There are 2 related quantities giving more intrinsic properties. One is the information dimension,
which tells how this entropy scales with the size of the boxes defining its partition. We will be talking
about it in next section. The other quantifies how information evolves in time or under each iteration
and is the main character of this section, the Kolmogorov-Sinai, or K-entropy.
Roughly speaking, the K-entropy tells us how our (precision of) knowledge of the state x decreases
under time evolution, which reflects the sensitivity to initial conditions. Another way to put it is how
the knowledge is improved if we pull things back in time.
To be more concrete, suppose we start with a primitive partition z0 = {Bi}, whereBi can be regarded
as some small volumes covering the attractor. The time evolution or iteration is done by the map
f . For each volume Bi we define the preimage f−1(Bi), which is weaker than the inverse map.
The partition of z0, to some extent, reflects the precision we have about the evolution. Let’s say we
construct the partition in a way that all we can say about a measurement x is which bin it lies in.
With these assumptions, if x0 ∈ Bi0 and f(x0) = x1 ∈ Bi1 , our knowledge of x0 is refined. We
know it is actually lying in Bi0 ∩ f−1(Bi1). This way, we are capable of defining a better partition
z1 = {Bi ∩ f−1(Bj)} and computing S(z1). That the precision gets better as we pull the iteration
back entails the precision becomes worse in time, and in this sense the K-entropy quantifies how
information evolves. The refined partition after n-iteration is

zn = {Bi0 ∩ f−1(Bi1) ∩ f−2(Bi2) ∩ ... ∩ f−n(Bin)}. (3.13)

The K-entropy is

K = lim
n→∞

1

n
S(zn). (3.14)
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Again to reflect the property of sensitivity to initial values, this quantity is related to Lyapunov Expo-
nents by a bound

K ≤
∑
λ(i)>0

λ(i) (3.15)

and the bound is saturated for a certain class of attractors. This can be motivated as follows. Imagine
that at t = 0 we start with small boxes of side ε which define the resolution. After n-iteration, the size
of each box expands by a factor en(λ

(1)+λ(2)...) which redefines the resolution later in time.

3.3 Fractal Dimensions

As it is pointed out in last section, to study the complicated geometric structure of strange attractors,
non-integral dimension is a characterization.
To start with, we first define the so-called capacity or box counting (in Rn). Suppose the set of interest
belongs to a subset in Rn. We cover it with N(ε) n-cube of side ε. The Capacity is defined as

dC = − lim
ε→0

logN(ε)

log ε
. (3.16)

Let us first apply this definition to a standard example to make reason of it. We consider a straight
line of length ` in R. The cubic here is merely a segment of length ε. The number needed to cover `
is N(ε) = `/ε and therefore

dC = − lim
ε→0

log `− log ε

log ε
= 1. (3.17)

Another example can be a square of side ` embedded in R2. N(ε) = `2/ε2. Then clearly dC = 2.

Next we look at 2 fractal examples. The first one is the famous 1/3 Cantor set, which can be produced
from [0, 1] by removing iteratively the middle 1/3 of each line element at each step. The length, or the
Lebesgue measure or the remaining set is 0, yet the set still contains infinitely many points. At nth
iteration, there are 2n remaining segments, each of which is of length ε = (1/3)n. Consequently,

dC = lim
n→∞

n log 2

n log 3
=

log 2

log 3
= 0.63... (3.18)

Another exactly computable example is Koch curve. At each stage, we need 4n boxes, each of which
is of size (1/3)n. Therefore,

dC = lim
n→∞

n log 4

n log 3
=

log 4

log 3
= 1.26. (3.19)

Contrast to the 0-length of 1/3 Cantor set, the Koch curve has∞ length.
In addition to Capacity, Hausdorff dimension is another similar measure that gives more sensible
results in some cases. The problem is that either of them and the examples we look at are defined from
a pure geometrical perspective, while in chaotic problems the attractors are determined by dynamics.
The measures of attractors may make them not applicable to real studies. However, dC defined above
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still provides us a foundation to think about general dimensions.
Following the same idea of box counting, again we cover the attractor of interest with n-boxes of side
ε and assign a box label i to each box. Suppose there are Ni out of total N points in the box. We
define the probability pi = Ni/N .2 The qth Generalized Dimension dn is defined as

dn = lim
ε→0

1

n− 1

log
∑

i pi
n

log ε
. (3.20)

As n = 0, d0 = dC .
As n approaches 1, writing n = 1 + δ and bearing δ → 0 in mind,

1

n− 1
log
∑
i

pni =
1

δ
log
∑
i

pie
δ log pi =

1

δ
log
(

1 + δ
∑
i

pi log pi

)
+O(δ2)

=
∑
i

pi log pi +O(δ).

Consequently,

d1 = lim
ε→0

∑
i pi log pi
log ε

. (3.21)

The reduction of dn to d1 is formally exactly the same as one of Rényi entropy to von Neumann
entropy. Usually the dimension of a geometry object determines how it scales with the box size ε. d1,
similarly, gives how the information content

∑
i pi log pi scales with ε.

The last dimension I would like to introduce here is the Lyapunov Dimension. It was proposed by
Kaplan and Yorke to express dimensions in terms of dynamical quantities, Lyapunov exponents. For
a dissipative system, we know the volume of states in the phase space contracts, implying the sum of
all Lyapunov exponents should be negative. The fact that some exponents must be negative supports
the existence of attractors, while the chaotic phenomena appearing on the attractor are attributed to
those positives λs. We define µ(n) =

∑n
i=1 λi as the sum of the n largest λi in the Lyapunov

spectrum. Between 2 integers n and n+ 1, it is defined by linear interpolation

µ(t) =

n∑
i=1

λi + (t− n)λn+1. (3.22)

The Lyapunov dimension is then defined as

dL = max{t, µ(t) ≥ 0}. (3.23)

Suppose µ(n) > 0 and µ(n+ 1) < 0. The extremum can be evaluated as

dL = n+
1

|λn+1|

n∑
i=1

λi. (3.24)

2We have avoid diving into defining the invariant (physical) measure ρ. pi can be viewed as an estimate of
∫
Vi

dτ ρ(x).
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As we have pointed out, the dimension of a space, roughly speaking, tells us how it scales with the size
of boxes used to cover it. The sum of Lyapunov exponents tells how a phase space volume expands
or contracts along time evolution. dL can be interpreted as the dimension at which the volume stays
invariant. The conjecture by Kaplan and Yorke is dL = d1.
In addition to these 3 quantities, there are some other quantitative criteria for the onset of chaos.
Examples include decay of autocorrelation function and broad distribution of frequencies in power
spectrum.
In most literatures, strong criteria for chaos are the existence of a positive Lyapunov exponent and
positive Kolmogorov-Sinai entropy3.

4 Summary

In this talk and note we have review/introduce both qualitative feature and quantitative measures for
classical chaotic systems. Some qualitative features are visualized with figures. As for quantitative
measures we do our best to raise some simple analytical soluble toy examples, though much care is
required when serious numerical calculation concerns us.
With the quantities defined in last section, I think, at philosophical level, they opened another route
to think about physical problems. In most physics curriculums we started with some exactly soluble
models, thoroughly discussing their solutions and properties. Next, we often turned on perturbations
and utilized perturbation machinery to refine the existing solutions. Such approach strongly depends
on the property that the systems there are separable and the linear nature of the unperturbed models,
that is to say, we are capable of talking about a harmonic mode, or some of them. It is not the case
for nonlinear dynamics. It is seen from the spectrum analysis that one needs infinitely many modes to
deal with non-linear problems.
Instead, for nonlinear problems, we have to utilize quantities such as Lyapunov exponents and K-
entropy to help us characterize systems.
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