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In previous talks we have gone through various types of dualities. Though we may have

acquired a rough idea about duality, that 2 seemingly distinct theories actually describe

the same physical essence, we did not really specify what it means by duality. Indeed, the

definition of this term is rather vague. For examples, in classical Ising model we can consider

expansions on the physical lattice and the dual lattice, which respectively correspond to

expansions at opposite temperature scale. To that end, we actually try to formulate theories

defined on lattices with dual geometries, say square↔ square and triangle↔ honeycomb and

dig out the correspondence.

Then we have gone over several lattice gauge theory. Using techniques such as Poisson

summation we are able to represent lattice XY model in seemingly distinct representations,

for instance, the current loop expansion. Some operator correspondence were established such

as one between a compact boson φ and a massless gauge field aµ, ∂µφ ↔ εµνρ∂
νaρ. At this

level, duality refers to phrasing the same partition function in terms of different dynamical

variables and thus establish the equivalence between different lattice models. In the course of

breathing life to some of Hubbard-Stratonovich fields, the mapping is no longer exact owing

to extra dynamical terms. This kind of duality belongs to the so-called IR dualities, which

means 2 theories flow to the same one at IR fixed point. Since we will be discussing the

generalization of the bosonic particle-vortex duality, in the rest of this note, by duality I will

be referring to IR duality. In addition, most of the time we will turn on background fields

coupling to conserved currents on both sides. Dualities then can be phrased as the equivalence

of partition functions as functions of background fields.

Although an IR duality, say one between theory A and B, is exact only at the critical point,

we may imagine if we slightly move away from the critical point, the deformation δA maps,

somehow, to δB. Consequently, we may still compare the phase relations between perturbed

theories A ′ and B′.

Besides, although this note aims to explain those examples in Ref. [10], we borrow some

arguments from Ref. [8] from sections to sections and some other related dualities proposed

by other works such as Ref. [3, 5, 15], to name a few.
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1 The Bricks

In this section we introduce/state the fundamental building blocks and techniques in the

following derivations.

Our starting duality is one relating a free fermion to a scalar coupled to U(1) theory. In the

course of the note, we denote dynamical fields using lowercase letters and background fields

using capital letters. Turning on the background field A, it reads

iΨ̄ /DAΨ↔ |Dbφ|2 − |φ|4 +
1

4π
bdb+

1

2π
bdA. (1.1)

Since it relates 1 boson theory to 1 fermion one, sometimes it is called 3 dimensional bosoniza-

tion.

An operator mapping can be drawn immediately by varying both side with respect to Aµ,

responding to which is the electromagnetic current Jµ.

Ψ̄γµΨ↔ 1

2π
εµνρ∂µaρ. (1.2)

Recall that in 1+1 dimensions, phrasing a fermion in terms of bosons makes use of Jordan-

Wigner transformation, where an extended bosonic configuration is needed so as to incorpo-

rate strong correlation between fermions. By virtue of that, we suspect the fermion Ψ maps

also to some composite extended operators on the right-hand side. Let us look more closely

at the case dA = 0. Variation with respect to a0 on the right-hand side yields

ρφ +
1

2π
db = ρφ +

1

2π
f = 0, (1.3)

where jµφ = iφ†
↔
Dµφ. Explicitly, the flux of emergent gauge field db is proportional to the

charge density of φ. Owing to this fact, the theory on the right-hand side sometimes is

regarded as the relativistic version of flux attachment. On top of that, this relation implies

that when there is a single monopole (vortex) fM event satisfying
∫

db =
∫
fM = 2π ⇒ Qφ =

−1. Another φ† exists. Consequently, we have an operator

φ†fM (1.4)

being neutral under Ub(1) but carrying charge +1 under UA(1). We then state the corre-

spondence

Ψ↔ φ†fM . (1.5)

If we turn on the mass mΨ̄Ψ, depending on the sign of m, or the sign relative to one of

Pauli-Villar mass, the fermion theory acquires Hall conductance 0 or −1. On the other hand,

this deformation also turns on a mass term r|φ|2 on the boson side. When r < 0, Higgs

mechanism makes the IR theory trivial, corresponding to ν = 0. On the other hand, when

r > 0, φ is gapped.

1

4π
bdb+

1

2π
bdA =

1

4π
(b+A) d(b+A)− 1

4π
AdA, (1.6)

– 2 –



corresponding to ν = −1. We would like to spend a paragraph to discuss how time-reversal T is

implemented on the effective action (as I understand.) Classically, a single massless Dirac cone

in 2+1 dimensions is time-reversal invariant. Nonetheless, quantum mechanically, there is no

way to properly calculate the partition function while preserving both U(1) and time-reversal

symmetry. This is the origin of parity anomaly [2]. For example, we can introduce a gauge

invariant Pauli-Villar regulator into a theory when calculating the fermion determinant, yet

the heavy mass of the Pauli-Villar field explicitly breaks time-reversal. This issue is addressed

again recently in the review paper Ref. [14]. In particular, a regularization yields the result

det[ /DA] = |det[ /DA]| e−iπ
η
2 . (1.7)

Other regularizations are realized by adding properly normalized counter terms into the La-

grangian, taking 1
4πAdA for example. The parity anomaly, from this point of view, manifests

from the imaginary part of effective actions. On some under time-reversal, η → −η. If we

want to preserve the regularization convention, equivalently a term η is added to the effective

action. In flat space, πη can be replaced with 1
4π

∫
d3xAdA according to Atiyah-Padoti-

Singer (APS) index theorem. Thus, for a single Dirac cone iΨ̄ /DAΨ → iΨ̄ /DAΨ + 1
4πAdA,1

being not time-reversal invariant. Another way of thing this term is that the Pauli-Villar

mass is T odd, and thus the change in Lagrangian is 1
4πAdA.

A way to store T symmetry (of the partition function) is including bulk contribution into

the theory 1
8πAdA, which can be thought as a 3+1 dimensional θ term taking its value on

the boundary with θ = π. Including this term, the partition function becomes real. More

precisely, | det[ /DA]|(−1)I, where I is the 3+1 dimensional Dirac index [14].

2 Dualities

In this section let us derive other dualities using (1.1). This is done by gauging the original

background field and turn on another background field (since in 2+1 dimensions a gauged

U(1) symmetry yields another U(1) conserved current.) That is to say, we let A → a and

add on both side of the duality 1
2πa dB− 1

4πB dB, where B is the new background field. The

duality becomes

iΨ̄ /DaΨ +
1

2π
adB − 1

4π
B dB ↔ |Dbφ|2 − |φ|4 +

1

4π
bdb+

1

2π
(b+B)da− 1

4π
B dB. (2.1)

Integration over a on the right-hand side yields functional delta function imposing b = −B.

The following integration over b leads to a scalar at Wilson-Fisher fixed point, while the

fermion side is a single fermion coupled to a QED.

iΨ̄ /DaΨ +
1

2π
adB − 1

4π
B dB ↔ |D−Bφ|2 − |φ|4. (2.2)

1There should be also gravitational Chern-Simons term. We suppress it throughout this note since we work

in flat spacetime.
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2.1 Bosonic Particle-Vortex Duality

Using (2.2), we gauge B → b and turn on another background field C. The fermion side

becomes

iΨ̄ /DaΨ +
1

2π
adb− 1

4π
bdb+

1

2π
bdC (2.3)

while the boson side becomes the Abelian Higgs model

|D−bφ|2 − |φ|4 +
1

2π
bdC. (2.4)

Next we try to integrate out b, whose equation of motion is d(b − a − C) = 0. Thus we

substitute b = a+ C into the action. Those Chern-Simons terms now read

1

2π
ad(a+ C)− 1

4π
(a+ C) d(a+ C) +

1

2π
(a+ C) dC

=
1

4π
ada+

1

4π
C dC +

1

2π
a dC.

Next we group the fermion and 1
4πada Lagrangian. This combination can be regarded as a

single fermion in 2+1 dimensions under time reversal operation. Thus it is dual to the time

reversed version of the right-hand side of (1.1), which reads

iΨ̄ /DaΨ +
1

4π
ada↔ |D−bφ̃|2 − |φ̃|4 −

1

4π
bdb− 1

2π
bda. (2.5)

Integrating over a imposes the constraint b = C and we end up with the duality

|D−C φ̃|2 − |φ̃|4 ↔ |D−bφ|2 − |φ|4 +
1

2π
bdC. (2.6)

This is the bosonic particle-vortex duality mentioned introduced in previous talks.

2.2 Fermionic Particle-Vortex Duality

Next we discuss the fermion particle-vortex duality. This can be derived by adding − 1
4πBdB

to (2.2), making it dynamical B → b and coupling it to another new background field A.

Replacing Ψ with χ, the fermion side becomes

iχ̄ /Daχ+
1

2π
a db− 2

4π
bdb+

1

2π
bdA. (2.7)

The boson side then reads

|D−bφ|2 − |φ|4 −
1

4π
bdb+

1

2π
bdA↔ iΨ̄ /D−AΨ +

1

4π
AdA. (2.8)

Charge conjugation operation over Ψ transforms the Dirac operator /D−A → /DA. Conse-

quently, we have

iχ̄ /Daχ+
1

2π
adb− 2

4π
bdb+

1

2π
bdA↔ iΨ̄ /DAΨ +

1

4π
AdA. (2.9)
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As we explained, the fermion path integral defined this way is T invariant up to an anomaly.

We can attach a bulk term − 1
8πAdA to both side to make it T invariant, leading to

iχ̄ /Daχ+
1

2π
adb− 2

4π
bdb+

1

2π
bdA− 1

8π
AdA↔ iΨ̄ /DAΨ +

1

8π
AdA. (2.10)

This theory in claimed to be the precise statement of the fermionic particle-vortex duality

proposed in Ref. [9, 12, 13]. To demonstrate the the resemblance, let us try to integrate

out b, whose equation of motion is 2db = d(a + A). If we naively plug this relation into the

Lagrangian, it results in

iχ̄ /Daχ+
1

4π
adA+

1

8π
ada. (2.11)

If we incorporate those 1
8πa da/ 1

8πAdA into the definition of ermionic path integrals, the

duality after eliminating b becomes

iχ̄ /Daχ+
1

2π
a dA↔ iΨ̄ /DAΨ, (2.12)

which is the proposal in Ref. [9, 12, 13]. The reason that we had better not eliminate b so

casually is b = (a + A)/2 doesn’t satisfy proper flux quantization. To address this loophole,

in Ref. [8] they suggest one should impose a different flux quantization condition for the field

a ∫
da

(2π)
= 2Z (2.13)

and they point out this assumption is not innocuous as a is dynamical.

Let us discuss what a bit the operator mapping for this fermion particle-vortex duality.

Let us again borrow the argument in Ref. [8]. In the simpler picture (2.12), owing to (2.13),

the smallest vortex fM that we can have is a double vortex. There are two 0-modes transform-

ing 1/2 representation of SU(2). The ground state |0〉, single 0-mode state and the double

0-mode state carry gauge charge qa = −1, 0, and 1 respectively. Because a itself is not elec-

trically charged under a, Gauss law demands we focus on the single 0-mode sector qa = 0,

and it thus corresponds spin 1/2 state. Thus, the physical electron Ψ, which is electrically

charged 1 under A, corresponds to a neutral (under a) 0-mode χ and a double vortex fM
which is also electrically charged +1 under A.

We can also look at the correspondence in the refined picture (2.10), where we can consider

vortex events of a and b. χ has electric charge qa = +1. daM has electric charge qb = 1 and

dbM has electric charge qa = 1, qb = −2 and qA = 1. The simplest operator that is gauge

invariant under a and b and charged +1 under A is

χ†(daM )2(dbM ). (2.14)

This can be rephrased. As dA = 0, let us consider a single vortex of b field, dbM . Gauss law

obtained by δ
δb0

, that

1

2π
(∇× a)− 2

1

2π
(∇× b) = 0, (2.15)
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turns on a double vortex of a, while Gauss law from δ
δa0

turns on a fermion mode

ρχ +
1

2π
εij∂ibj = 0. (2.16)

Interpreting this simple combination as physical electron gives the same result as (2.14).

Thinking in terms of the 0-mode, this time fermion 0-mode states permitted transform under

spin 0 representation since b has qa = 1 as well. Then we go back to the discussion the

hypothetical boson-fermion duality. The relative angular momentum between χ† and dbM is

1/2 and thus the combination is a fermion. In the following discussion, we will often use the

naive duality (2.12).

2.3 Self Dual Theories

Applying the fermion-fermion duality for 2 fermions reveals the self-dual structure of the

following Lagrangian [4, 8, 15]

LSD(A,B) = iψ̄1γ
µ(∂µ − i(a+B)µ)ψ1 + iψ̄2γ

µ(∂µ − i(a−B)µ)ψ2 +
1

2π
εµνρaµ∂νAρ, (2.17)

where ψis are 2-component spinors representing electrons, and Aµ and Bµ are both classical

fields. This theory is self-dual in the sense that its partition function stays the same after

interchanging A and B.

Z[A;B] = Z[B;A]. (2.18)

That is, it is dual to the following theory

L̄SD(B,A) = iχ̄1γ
µ(∂µ − i(b+A)µ)χ1 + iχ̄2γ

µ(∂µ − i(b−A)µ)χ2 +
1

2π
εµνρbµ∂νBρ, (2.19)

where we use χs and bµ to denote dual fermions and dynamical gauge field. We can actually

provide a handy derivation here following the argument in Ref. [4]. First we apply (2.12)

to (2.17), obtaining

iχ̄1γ
µ(∂µ − ibµ)χ1 + iχ̄2γ

µ(∂µ − icµ)χ2 +
1

2π
a dA+

1

2

1

2π
bd(a−B) +

1

2

1

2π
cd(a+B) (2.20)

Terms linear in a can be collected and integrated out, imposing a constraint on other gauge

fields (provided there is no holomony).

1

4π
ad(2A+ c+ b)⇒ b = −c− 2A. (2.21)

Consequently,

iχ̄2γ
µ(∂µ − icµ)χ2 + iχ̄1γ

µ(∂µ + i(c+ 2A)µ)χ1 +
1

2π
(c+A) dB. (2.22)

Under a particle-hole transformation on χ1, the gauge coupling obtains a minus sign. Then

defining c+A→ c completes the derivation of duality.
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One may wonder if this self-dual theory survives after we refine the theory as (2.10). Actually

there is also a refined counter part derived in the last section of Ref. [5].

This theory is intriguing in the sense that on each side of duality, only partial symmetry man-

ifests. Without any external field, the gauged N
(2)
f = 2 theory has explicit global SU(2) flavor

symmetry, and a hidden U(1) symmetry coupled to the topological current j = ε∂a. Superfi-

cially, the symmetry encoded is SU(2)×U(1). To each continuous global symmetry, we turn

on classical field coupling to the corresponding current. For example, in (2.17), A is coupled

to U(1) current, while B couples to the Cartan generator of SU(2) current. On the dual side,

the roles played by A and B get swapped. Schematically U(1)A×SU(2)B ↔U(1)B×SU(2)A.

Thus, if the duality holds, the full theory actually has a global symmetry group SU(2)×SU(2).

This provides another explanation for the O(4) symmetry structure of 2-flavor QED3 pointed

out in Ref. [4, 11].

Actually, making use of the celebrated bosonic particle-vortex duality between abelian Higgs

model and XY model, a bosonic self-dual theory containing Ns = 2 can also be derived. A

derivation at the level of partition function is given in [8]. Here we demonstrate a heuristic

and handy version.

By bosonic particle-vortex duality we mean the equivalence of partition function between

LXY = |(∂µ − iAµ)φ|2 ↔ LHiggs = |(∂µ − iaµ)ϕ|2 +
1

2π
εµνρaµ∂νAρ. (2.23)

Given this duality, one can further consider the following theory

LbSD(A,B) = |(∂µ − i(a+B)µ)φ1|2 + |(∂µ − i(a−B)µ)φ2|2 +
1

2π
εµνρaµ∂νAρ, (2.24)

which under duality can be written

|(∂µ − ibµ)ϕ2|2 + |(∂µ − icµ)ϕ1|2 +
1

2π
B d(b− c) +

1

2π
ad(b+ c+A). (2.25)

Integrating out aµ imposes the constraint b = −c−A. Besides, we perform a charge conjuga-

tion transformation on ϕ2 and redefine c+A/2→ c. Consequently, the resulting Lagrangian

is

|(∂µ − i(c−A/2)µ)ϕ1|2 + |(∂µ − i(c+A/2)µ)ϕ2|2 +
1

2π
cd(−2B) = LbSD(−2B,−A/2),

(2.26)

The resulting Lagrangian thus implies the duality relation

Z[A;B] = Z[−2B;−A/2]. (2.27)

3 Other Issues

We have shown by assuming the boson-fermion duality, other dualities can be derived. Thus,

one may ask what is behind this hypothetical theory. Actually, the whole story can be
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incorporated in a large set of dualities called level-rank duality [1].

Another route is starting from Mirror symmetry. It has been shown the duality (1.1) can be

derived by deforming N = 4 mirror symmetry [6]. More phases are derived in [7].

Besides, regarding the self-dual stories stated in the last part, there is no free side, both

being interacting without an apparent large or small parameter. Thus a reliable computation

scheme is needed to calculate physical quantities, taking the dressed gauge boson propagator

〈aµ(p)aν(−p)〉 for example.

A technique that is implemented in [3, 4], where they consider large charge limit. Together

with dualities, they show in one description some fermions are completely decoupled in from

any gauge fields in large charge limit and thus their current-current correlation functions can

be computed without ambiguity. The current-current correlation function becomes gauge

boson-boson correlation function on the other side of duality. This way they derived the fully

dressed gauge boson propagator.

If we can develop techniques to perform calculation or discover so more applications to physical

systems in terms of these dualities is what we are all looking forward to.
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