Gravitational wave as a new window to the early universe

LianTao Wang Univ. of Chicago

University of Illinois at Chicago, Nov 13, 2024

Cosmos

A standard model of cosmology.

What do we know

What do we know

Opaque to light

Big bang nucleosynthesis

Thermal eq. In early universe + Nuclear reaction properties + Tests by observation

What we think we know

Teaches us a lot of about primordial large scale fluctuations

CMB

Teaches us a lot of about primordial large scale fluctuations

Large gaps in our knowledge

Inflationary era

Space grow by a factor of e⁶⁰

Happening under extreme conditions: Energy scale up to 10¹⁶ GeV Curvature up to 10¹³ GeV

Exactly what happened?

How to see through the thermal fog?

A few stories

Typically, need something quite dramatic.

A benchmark

Electroweak phase transition in the Standard Model

What do we know about the Higgs potential?

What do we know about the Higgs potential?

How does Higgs evolve in the early universe?

1st order phase transition

Proceed through bubble nucleation.

 H^{-1}

Bubble collision Violent process involving bubble wall, plasma ...

⇒ Gravitational wave

 \Rightarrow wave-length \approx bubble size \approx H⁻¹

Typically, need something quite dramatic.

Better measurement of the

Higgs

Unique kind of coupling. Important to observe it!

Better measurement of the

Higgs

2. New physics in the alternative scenario often induce changes in other Higgs coupling, such as hZ

EW phase transition

Models with 1st order EWSB, large gravitational wave signal.

EW phase transition

Combine cosmic (gravitational wave) and terrestrial (Higgs coupling)

Nail the electroweak phase transition

EW phase transition

Combine cosmic (gravitational wave) and terrestrial (Higgs coupling)

Nail the electroweak phase transition

2nd order phase transition

Cosmic string and gravitational wave

Typically, need something quite dramatic.

In addition to the inflaton, many other fields have quantum fluctuations

A spectator light scalar

R. Ebadi, S. Kumar, A. McCune, H. Tai, LTW 2023

$$\mathcal{L} = \frac{1}{2} (\partial \sigma)^2 - \frac{1}{2} m^2 \sigma^2 - \frac{\lambda}{4} \sigma^4 \qquad \text{ with } m < H$$

The spectrum of its fluctuation can be studied by stochastic method Starobinsky and Yokoyama, 1994; Markkanen, Rajantie, Stopyra, Tenkanen, 1904.11917

$$\mathcal{P}_{f}(k) = \sum_{n} \frac{2}{\pi} f_{n}^{2} \Gamma\left(2 - 2\frac{\Lambda_{n}}{H}\right) \sin\left(\frac{\Lambda_{n}\pi}{H}\right) \left(\frac{k}{H}\right)^{2\Lambda_{n}/H} \quad \rightarrow \mathscr{A}\left(\frac{k}{H}\right)^{\frac{2\Lambda_{\text{lowest}}}{H}} \text{ for } k \ll H$$

Blue tilt

At horizon exit: Amplitude \approx H

After exit, damping $\dot{\sigma} = -\frac{m_{\sigma}^2 \sigma}{3H}$

$$\sigma_k(t) = \sigma(t_*) \exp\left(-\frac{m_{\sigma}^2}{3H}(t - t_*)\right) = \sigma(t_*) \left[\exp\left(-H(t - t_*)\right)\right]^{\frac{m_{\sigma}^2}{3H^2}} = \sigma(t_*) \left[\frac{k(t)}{H}\right]^{\frac{m_{\sigma}^2}{3H^2}}$$

More damping for longer wave-length (earlier exit)

Blue tilt

At horizon exit: Amplitude \approx H

After exit, damping $\dot{\sigma} = -\frac{m_{\sigma}^2 \sigma}{3H}$

For more general scalar theory

$$\mathcal{P}_f(k) = \sum_n \frac{2}{\pi} f_n^2 \Gamma\left(2 - 2\frac{\Lambda_n}{H}\right) \sin\left(\frac{\Lambda_n \pi}{H}\right) \left(\frac{k}{H}\right)^{2\Lambda_n/H} \quad \to \mathscr{A}\left(\frac{k}{H}\right)^{\frac{2\Lambda_{\text{lowest}}}{H}} \text{ for } k \ll H$$

Eventually, evolve like matter

Can become important

$$\Delta_{\zeta}^{2}(k) = \begin{cases} \Delta_{\zeta_{r}}^{2}(k) + \left(\frac{f_{\sigma}(t_{d})}{4+3f_{\sigma}(t_{d})}\right)^{2} \Delta_{S_{\sigma}}^{2}(k), \ k < k_{d}, \\ \Delta_{\zeta_{r}}^{2}(k) + \left(\frac{f_{\sigma}(t_{d})(k_{d}/k)}{4+3f_{\sigma}(t_{d})(k_{d}/k)}\right)^{2} \Delta_{S_{\sigma}}^{2}(k), \ k > k_{d} \end{cases}$$

2nd GW

Assuming the scalar behave similar to curvaton. Becoming important before decay.

Comparing scenarios

Scenarios after reheating.

 $\tau_{\rm MR}$ = MD-RD transition

Conclusions

- GW will be a great tool in probing early universe, especially for epochs "invisible" through other means.
 - * Long term prospect. Probably the only way to get these information.
- * Discovery and study its shape very informative.