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In this paper, we will underscore the basics of classical computing / game strategy

and the basics of quantum computing needed to explore the effects that quantum

information exchange has on classical games. We will then discuss two examples
of quantized games: the PQ penny flip game, which is considered to be the first

quantized game, and a quantized Card Game problem.

Introduction

In 1999, D. A. Meyer merged the subject of game theory with the new and exciting world of
quantum computing, introducing the world to the first quantum, or quantized, game. Since 1999,
many mathematicians and physicists alike have added to this new class of games, developing
more quantum games and quantum game theory. Quantum game theory differs from classical
game theory in three main ways: the initial states can be superimposed, the initial states can
be quantum entangled, and a superposition of strategies can be acted on the initial states. Most
of the time, this manifests in quantum games as one or more of the players employing quantum
strategies by acting quantum gates, using measurement tools only available in quantum mechanics,
or manipulating the system through uniquely quantum means. It is important to note that while
both classical and quantum games may have real world applications in the form of information
theory and other computing based fields, what often makes them interesting is not just their
applications, but rather the intellectual puzzle one explores in working them out.

Background Information

1. Classical Computing

In order to understand the revolution that is quantum computing, we must first understand the
basics of classical computing. On any given standard computer, the most basic unit of information
is the bit. The bit in its most simple form denotes a 0 or 1, but depending on the situation can
also be representative of true or false, on or off, yes or no, or another pair of binary information.

1.1 Classical Gates
A classical gate is an operator which acts on an ordered input sequence of k bits (b1,b2,...,bk),
with k≥1, and the results are ordered in an output sequence of l bits (β1,β2,...,βl) such that:

G(b1,b2,...,bk)=β1,β2,...,βl (1)

where bi,βi=0,1. The most common classical gates are as follows: the NOT, OR, AND, NAND,
NOR, and XOR gates. See (10) for diagrams and descriptions of these gates.

2. Quantum Computing

In quantum computing, a qubit is an elementary unit, often representing a microscopic system
such as nuclear spin or a polarized photon. For qubits, the states 0 or 1 are prescribed by one of
two normalized, mutually orthogonal, states which we label as {|0〉,|1〉}. We define these states
such that:

|1〉=
(

0
1

)
|0〉=

(
1
0

)
(2)

These two states form our basis.



2.1 Pure States and Superpositions
We can represent the state of our qubit in one of two ways; as in a classical state or as in a
superposition such that:

|ψclassical〉=γ |n〉, n=0,1 |γ|2 =1

|ψsuperposition〉=α|0〉+β |1〉 |α|2+|β|2 =1
(3)

It is important to note that when performing a calculation on a superposition, the calculation is
performed on all pure states composing the superposition. Namely, in an n qubit superposition,
the calculation is performed over the 2n pure states in that superposition. Finally, when measuring
or observing a qubit in a superposition, the superposition collapses to that state, allowing one to
only measure the pure state.

2.2 Density Matrices
Another important piece of formalism necessary for our discussion of quantum games is the density
matrix and its spectral decomposition. Instead of using |0〉 and |1〉 for pure states, or weighted
sums of |0〉 and |1〉 for mixed states, to represent our system, we can also use positive, semidefinite,
Hermitian matrices with trace 1 to describe the state of our system. We call these density matrices.
Any general density matrix, ρ, can be written as the weighted sum of pure states, |φ〉〈φ| such that:

ρ =
∑
n

λn |φn〉〈φn| where λn≥0 and
∑
n

λn=1 (4)

Here, λn is the probability of getting the state |φn〉. The density matrix is not a completely
different conception of our system, but rather a re-framing of what we have already discussed!
For example, where before pure and mixed states were described by equation (3), they can also
be described by the following density matrices:

ρ pure = λi |φi〉〈φi| where λi=1

ρ mixed =
∑
n

λn |φn〉〈φn| where
∑
n

λn=1
(5)

Finally, it is easy to see that if ρ is comprised of pure states denoted by |φi〉, then the λi’s in ρ
denote the probability of that pure state! This notion is also motivated by spectral decomposition,
which is important to the construction of the density matrix. For more information on spectral
decomposition, see reference, (21).

2.3 Unitary Matrices
In Quantum game theory, it is important to note that if any manipulation of the qubits is needed,
it must be performed by unitary operations. A unitary matrix, U, is a matrix whose adjoint, U†,
is equivalent to its inverse, U−1 such that:

U†U=UU†=I (6)

These unitary transformations function as gates do in classical computing. For example, the
identity matrix preserves the current state.

I=

[
1 0
0 1

]
(7)

The X Pauli matrix performs a NOT operation, switching a pure state 1 to a 0 and vice versa.

X=

[
0 1
1 0

]
(8)
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The Z Pauli matrix introduces a phase by switching the sign on the state 1.

Z=

[
1 0
0 −1

]
(9)

And perhaps the most important unitary matrix for our discussion of quantum gaming is the
Hadamard matrix, which transforms a pure state |0〉 into a superposition with equal probability
of being in state |0〉 and state |1〉.

H=
1√
2

[
1 1
1 −1

]
(10)

It is important to note that acting the Hadamard transform on a pure state, |0〉 or |1〉, puts the
system into a superposition state such that:

H|0〉= 1√
2

[
1
1

]
=

1√
2

(|0〉+|1〉) (11)

H|1〉= 1√
2

[
1
−1

]
=

1√
2

(|0〉−|1〉) (12)

Or in the Hadamard basis,

H|0〉= |+〉 where |+〉= 1√
2

(|0〉+|1〉) (13)

H|1〉= |−〉 where |−〉= 1√
2

(|0〉−|1〉) (14)

Furthermore, acting the Hadamard transform on a superposition state which is already in the
Hadamard basis returns a pure state such that:

H|+〉= |0〉 (15)

H|−〉= |1〉 (16)

This is an important aspect of the Hadamard gate which will become useful later.

3. Classical Game Theory

3.1 Classical Strategies
In classical game theory, players can employ one of two types of strategies: pure or mixed strategies.
For example, let’s say there exists a game in which the possible set of actions is prescribed by
ai. Then the player can choose to use either strategy Spure or Smixed in which the probability of
choosing action ai is Pi such that:

Spure=Pjaj where Pj=1

Smixed=
∑
i

Piai where
∑
i

Pi=1
(17)

Or in other words, a pure strategy is deterministic and mixed strategy is probabilistic.
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3.2 Nash Equilibrium
Another important piece of information we need for our discussion of quantum games is the
classical concept of Nash Equilibrium. In simple terms, the players of a game are considered to be
in Nash Equilibrium if player A does not gain anything from deviating from their initial strategy,
assuming player B also leaves their strategy unchanged.

In order to describe the concept of a Nash Equilibrium more formally, we must first understand
the idea of an action profile. In game theory, the action profile is a list of actions for each player
in the game with every list item corresponding to an individual player. In other words, the action
profile is a comprehensive description of the action done by each player in the game.

Formally, as described by Osborne (19), let us define the action profile a such that a is
the set of the actions ai performed by i players. Let a

′

i denote the action of every player i (either

= ai or 6= ai). Then (a
′

i,a−i) denotes the action profile in which every player j, except player i,

chooses their action to be aj ∈a whereas player i chooses their action to be a
′

i /∈a.

Then the action profile a∗ is a Nash Equilibrium if, for every player i with action ai,a
∗ is

at least as preferable as the action profile (ai,a
∗
−i). In other words, player i′s payoff function, ui

is such that:

ui(a
∗) ≥ ui(ai,a

∗
−i) ∀ ai (18)

Where any player’s payoff function describes the award given to that player at the outcome of the
game. For example, if I were to bet 1 dollar that a flipped penny would land heads up, my payoff
function would be a function of the two outcomes, heads up and heads down, equalling +1 if the
penny were to land heads up and -1 if the penny were to land heads down. The payoff function is
important because it encodes important information about the game at hand–what each player
wins, or gains, given a specific action profile.

It is important to note that a player’s payoff function, ui is different from that player’s
expected payoff, ui. The expected payoff is the sum of all payoff possibilities weighted by the
probability that payoff will occur. The expected payoff is also important as it can be a measure
of whether or not a game is fair. If player A’s expected payoff for a game is +100 and player B’s
expected payoff for that same game is -100, perhaps player B should play a different game...

3.3 Zero Sum Games and Non-Local Games
The last piece of information necessary for our discussion of classical game theory is the concept
of a zero-sum game. A zero-sum game is a two-player game in which one player can only make
themselves better off by making the other player worse off. Or in other words, a game in which
the payoff function of player A is the negative of the payoff function of player B such that:

uA=−uB (19)

The unique Nash Equilibrium of most classical zero-sum games is effectively a draw. For example,
in tic-tac-toe, if player A is playing her best and player B is equally playing her best, neither
player can do better for herself than to draw, if both players are trying to win and trying not
to lose. Zero-sum games have a unique Nash Equilibrium because if there were a way for player
A or player B to improve her strategy, the game would not be zero sum. In other words, player
B is forced to play for a draw if player A correctly plays to win in tic-tac-toe, or else player B loses.

Finally, it is important to note that the majority of–if not all–classical games that can be
quantized belong to a class of classical games called non-local games. This type of game is a game
in which the players are separated by time or space such that every player acts their move with
no knowledge of the moves being performed by any other player. Essentially, in non-local games,
the players are playing a cooperative game of incomplete information.
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4. Quantum Games

As mentioned in the introduction, quantum games are exciting thought experiments in which
one allows one or more players in a classical game to employ quantum strategies. The act of
quantizing classical non-local games can produce quantum games which have drastically changed
the odds or outcome of their classical counterpart, either giving supreme advantage to a player in a
classically fair game, or giving a player the proper tools to even the odds in a classically unfair game.

Since Meyer introduced the first quantized game in 1999, numerous new quantum games
with varying levels of complexities and outcomes have been written about by anyone from
physicists to statisticians to game theorists. The following paragraphs will discuss how the
outcomes of two classical games–the PQ penny flip game and a classical card game–change under
the introduction of quantum strategy.

5. PQ Penny Flip Game

The classical version of Meyer’s PQ penny flip game is comprised of the following four steps:

1. The referee places a penny heads up in covered a box such that neither P nor Q can
see the state of the penny until the referee reveals it at the end of the game, but both P and Q
know that the penny’s initial state was heads up.
2. On Q’s turn, she can either flip the penny (F) or do nothing (N).
3. On P’s turn, she can also (F) or (N).
4. Q takes the final move either flipping the penny or not

At the end of Q’s turn, the box is opened and the state of the penny is revealed. If the
coin is revealed to be heads-down, P wins with payoff, uP =+1, and Q loses with payoff, uQ=−1.
If the penny is revealed to be heads-up, Q wins with payoff, uQ=+1 and P loses with payoff
uP =−1. We can summarize the classical penny flip game in the following table:

Move and Payoff Summary
Q’s 1st Move P’s Move Q’s 2nd Move (uQ,uP )
N N N (+1,-1)
N F N (-1,+1)
N N F (-1,+1)
N F F (+1,-1)
F N N (-1,+1)
F F N (+1,-1)
F N F (+1,-1)
F F F (-1,+1)

?
So, out of the eight different combinations of moves, P and Q both have four ways of winning +1
point and four ways of losing -1 point. And when P wins +1, Q loses -1, and vice versa, such that
their payoff functions can be summarized as:

uP =−uQ

This is the very definition of a zero-sum game! Classically, this is a fair game that sees both P
and Q winning with probability, P =0.5.

Finally, if we allow players P and Q to employ mixed strategies, it can be easily shown
the mixed-strategy Nash Equilibrium of this game has player P chose (N) or (F) with equal
probability, 0.5, and player Q choose between her four options, (NN), (FF), (NF), (FN), with
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equal probability 0.25. such that their strategies can be written as:

SP = 0.5 (N) + 0.5 (F )

SQ = 0.25 (NN) + 0.25 (FF ) + 0.25 (NF ) + 0.25 (FN)
(20)

In this situation, player P and Q both have expected payoffs:

uP =0

uQ=0
(21)

5.1 Quantized Penny Flip
In order to quantize this game, we will allow player Q free reign of quantum strategies, but restrict
player P to classical strategies. For simplicity we will restrict P to pure classical strategies, but
will later expand our results to classical mixed strategies as well. If we let |0〉 represent heads and
|1〉 represent tails, then the state of the game at any point can be described by a quibit, |ψ〉, such
that:

|ψ〉=α|0〉+β |1〉 (22)

Where the initial state of the game is:

|ψinitial〉= |0〉 (23)

The two classical moves, (F) and (N), can be described by the unitary transforms X and I
respectively. While player P’s is restricted to classical moves modeled by the above unitary
matrices, player Q, on the other hand, is able to enact any unitary transform on her turns.
Perhaps the most interesting of which is the Hadamard matrix, H.

Let’s consider the situation where player Q plays the Hadamard matrix on both of her
turns. After Q’s first turn, the state of the game can be described as:

H|0〉= 1√
2

(|0〉+|1〉)= |+〉

By playing H, Q has put the system into a superposition. Physically, she has placed the penny on
its side. As a result of this quantum move, if P leaves the penny alone, I, or if P flips the penny,
X, the state of the system remains unchanged. Explicitly:

I|+〉 =
1√
2

[
1 0
0 1

][
1
1

]
= |+〉 (24)

X|+〉= 1√
2

[
0 1
1 0

][
1
1

]
= |+〉 (25)

On the final turn of the game, Q acts the Hadamard transform again, effectively undoing her
original move, as shown in section 2.3:

H|+〉= |0〉

Now, to summarize the two possible situations where Q plays the Hadamard matrix on both of
her turns and P either does nothing, I, or flips the penny, X:

H I H |0〉= 1

2

[
1 1
1 −1

][
1 0
0 1

][
1 1
1 −1

](
1
0

)
= |0〉 (26)

H X H |0〉= 1

2

[
1 1
1 −1

][
0 1
1 0

][
1 1
1 −1

](
1
0

)
= |0〉 (27)

Therefore, if player P is restrained to classical strategies, and player Q is allowed to use quantum

6



strategies, playing H on both of her turns, no matter what move player P plays, at the end of the
game, the referee will always reveal the penny to be heads up, |0〉. Therefore, Q will always win
with expected payoff uq=1 and P will always lose with expected payoff up=−1. The quantization
of Q’s strategy puts the game in a state of superposition that cannot be altered by P, guaranteeing
Q’s victory.

5.2 Mathematical Motivation behind Selection of the Hadamard Matrix
Now, we will relax our restrictions a bit by allowing P to employ mixed classical game strategies
instead of only pure strategies. We will also show that the selection of H is motivated by finding
the Nash Equilibrium given Q acts a general unitary matrix. Let player P’s mixed-strategy be to
flip, X, with probability p, and not to flip, I, with probability 1-p. Again Q can employ quantum
moves. Following Meyer (1) and others (3), let Q’s transform be given by a unitary matrix of the
form:

UQ1 =

[
a b∗

b −a∗
]

where aa∗+bb∗=1 (28)

Since the game now involves mixed states, we must use a density matrix to describe the system.
The initial state is:

ρ0 = |0〉〈0|=
[

1 0
0 0

]
(29)

After Q’s first move, the state of the system is:

ρ1 =UQ1ρ0U
†
Q1 =

[
aa ab∗

ba∗ bb∗

]
(30)

After P’s move, the state of the system is:

ρ2 =pXρ1X
†+(1−p)Iρ1I†=p

[
bb∗ ba∗

ab∗ aa∗

]
+(1−p)

[
aa∗ ab∗

ba∗ bb∗

]
(31)

As discussed in section 2.2, the diagonal elements of the density matrix correspond to the
probability of pure states. Therefore, after P’s turn, the probability that the penny is heads up,
|0〉, or heads down, |1〉, can be expressed as follows:

Prob (|0〉)=pbb∗+(1−p)aa∗

Prob (|1〉)=paa∗+(1−p)bb∗
(32)

So what does this tell us about P and Q’s strategies? Well, P wants the penny to be revealed
to be tails up. So, it is in P’s best interest to maximize Prob (|1〉) and minimize Prob (|1〉).
Therefore, given Q’s strategy, if aa∗ > bb∗ P’s best response is to choose p=1, if aa∗ > bb∗, P’s
best response is to choose p = 0, and finally, if aa∗ = bb∗ P’s best response is to choose any p
∈ [0,1]. It seems somewhat trivial to call choosing any p ∈ [0,1] a best response in the case that
aa∗ = bb∗, as the probability of the penny being heads up is equivalent to the probability of the
penny being heads down and it is independent of P’s choice of p.

Player Q, on the other hand, wants the penny to be revealed to be heads up. It is therefore in
her best interest to maximize Prob (|0〉) and minimize Prob (|1〉), the inverse of what player P
wanted to do. So, if p > 0.5, it is in Q’s best interest to choose bb∗ = 1, if p < 0.5 it is in Q’s
best interest to choose bb∗=0, and if p = 0.5 it is in Q’s best interest to choose any a,b. Again,
the last situation seems somewhat trivial as penny has an equal probability of being heads up
and heads down which is independent from Q’s choice of a and b.

But these seemingly trivial situations are, in fact, not trivial at all when it comes to deducing
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the Nash Equilibrium of this game. Therefore, it is clear that the Nash Equilibrium is
p = 0.5 and aa∗ = bb∗ = 0.5 with both players getting payoffs uq = up = 0. This result is
exactly the same as the classical mixed-strategy equilibrium for both players, suggesting that a
player with optimal quantum strategy has an expected payoff, u, at least as great as her expected
payoff with optimal mixed-strategy.

Now, so far we have only worked out the general form for the first two moves of the game
given P employs a mixed classical strategy and Q acts a general unitary matrix on her turns. We
could go on to calculate the general state of the system at the conclusion of the game, ρ3, but the
algebra at that point becomes more messy than enlightening.

Now supposed that on Q’s second move, she chooses a strategy with a = b = 1/
√

2 such
that aa∗ = bb∗ = 0.5. Or in other words, she chooses the strategy where she enacts the
Hadamard matrix on both of her turns such that:

UQ1 =UQ2 =H (33)

Then,

ρ1 =UQ1ρ0U
†
Q1 =

1

2

[
1 1
1 1

]
(34)

ρ2 =pXρ1X
†+(1−p)Iρ1I†=

1

2

[
1 1
1 1

]
(35)

ρ3 =UQ2ρ2U
†
Q2 =

[
1 0
0 0

]
(36)

And again, the diagonal terms of the density matrix correspond to the probability of pure states.
Therefore, if player Q plays the Hadamard matrix on both of her turns, resulting in ρ3, when the
referee reveals the penny, it will always be heads up with probability 1 and will never be heads
down with probability 0. Therefore, if player Q plays the Hadamard matrix on both of her turns,
then she will always win with payoff uq=1, whether P employs pure or mixed quantum strategies.

So, it certainly seems that quantizing the PQ Penny flip game by allowing player Q to
utilize quantum strategies while restricting P to classical strategies, creates an unfair situation in
which player Q can always win by choosing to act the Hadamard matrix on both of her turns.

6. Alice and Bob Play Cards

However, Quantum game theory doesn’t always guarantee that the player employing quantum
strategies will always win. In fact, quantizing some classically unfair games can actually make
them fair. In the following section we will discuss an example game in which allowing Bob to use
a quantum query machine gives him fair odds against Alice where classically, he would have a 2/3
chance of losing.

6.1 The Classical Card Game
Let’s go over the classical version of this Alice–Bob card game. Let’s say Alice and Bob play
a card game. And let’s say Alice has three cards which are identical except for the following
markings: the first has a star on both sides, the second has a diamond on both sides, and the last
has a star on the front but a diamond on the back.
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? � ?

Front of Cards

?

? � �

Back of Cards

?
Then let’s say that Alice puts these three cards into a black box, shaking it up to randomize their
position and topside. Then we let Bob draw a card from the box, without flipping it, such that
both players can see the upper side of the card. If Bob draws a card with identical markings on
both sides, Alice wins with payoff, uA=+1 and Bob loses with payoff, uB=−1. However, if Bob
draws the card with different markings on front and back, Bob wins with payoff, uB=+1 and
Alice looses with payoff, uA=−1. It is easy to see that in this situation, their expected payoffs
are:

uA=
2

3
(+1)+

1

3
(−1)=

1

3

uB=
1

3
(+1)+

2

3
(−1)=−1

3

(37)

And that their probabilities of winning are:

PA=
2

3
and PB=

1

3
(38)

It is clear that Bob is at a disadvantage in this situation and the game is hence unfair to him. So
let’s say that in order to attract Bob into playing with her, Alice gives Bob the chance to operate
on the cards–ie Bob has one query on the black box–and then allows him to withdraw from the
game if he’d like. Classically, Bob can only attain one card’s information after his query. And
therefore, the game is still unfair.

6.2 Quantized Card Game
Now suppose in the quantum representation, we describe state of the card with a diamond by |0〉
and the state of the card with a star by |1〉. Then if Alice prepares the system randomly as she
did before, the upper sides of the cards in the box can be described by the following qubit, |r〉,
such that:

|r〉= |r0 r1 r2〉 where rk ∈ {1,0} (39)

Next, suppose Bob has a quantum query machine that depends on state |r〉 in the black box.
Suppose he constructs his query machine as follows. He starts with the unitary matrix, Uk such
that:

Uk=

[
1 0
0 eiπrk

]
(40)
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If rk=0, then Uk=I, but if rk=1, then Uk=Z He then sandwiches this unitary matrix between
two Hadamard matrices such that:

HUkH=
1

2

[
1 1
1 −1

][
1 0
0 eiπrk

][
1 1
1 −1

]
=

1

2

[
1+eiπrk 1−eiπrk
1−eiπrk 1+eiπrk

]
(41)

Creating his query machine! It is easy to show that:

HUkH |0〉=
1

2

[
1+eiπrk

1−eiπrk

]
=

1+eiπrk

2
|0〉+ 1−eiπrk

2
|1〉 (42)

And therefore:
HUkH |0〉= |rk〉 (43)

Then Bob inputs |000〉 to obtain:

(HUkH ⊗ HUkH ⊗ HUkH)|000〉= |r0 r1 r2〉 (44)

Therefore, after Bob’s query, he knows the upside marks of the three cards! The set of upsides of
the cards can be described by one of two three-qubit permutation sets:

S0 ={|0〉,|0〉,|1〉}

S1 ={|0〉,|1〉,|1〉}
(45)

Or in other words, after Bob’s query, he knows whether there are two cards diamond side up in
the box, or whether there are two cards star side up in the box. Additionally, if the system is
described by S0, Bob knows that the winning card is one of the two cards with a diamond on
top. This query machine has given Bob very important information about the game. So now Bob
draws his card, only able to look at the top face. If the card Bob has drawn has a diamond on its
upside face, he and Alice have an equal chance of winning, so he continues the game, however, if
the card Bob has drawn has a star on its upside face, Bob knows he has drawn the losing card
and refuses to continue playing. The opposite applies when the system is described by S1. Thus,
in allowing Bob to operate on the system with a quantum query machine and then decide whether
to withdraw from the game, we have created a quantized version of this card game which can be
guaranteed fair when Bob decides to continue playing.

Conclusion

In this paper, we only explored two relatively simple examples of quantum games. There are
many more complicated games that range in their solutions. Some quantized classical games alter
the odds, either skewing the game in one player’s favor, or evening out a previously unfair game.
For some classical games, quantization alters the game in its complexity but offers no notable
change in the game’s dynamic–a good example of this is perhaps the Stag Hunt game. We have
only brushed the surface in our discussion, analyzing games which only require the fundamentals
of quantum mechanics, however, as the games increase in their complexity, as do the quantum
tactics needed to resolve them. Higher level quantum games often require the entanglement
operator, extension to higher order bits, or in some cases, even cryptography to decode the answer.

While much work has been done in the field of quantum game theory since D. A. Meyer
originated the term in 1999, there is still much to be done. As we continue to quantize new,
more complicated games, adding to the already large set of games we can call quantum, perhaps
we will find more tangible, real world applications. But for now, quantum games will continue
to test our problem solving skills and our ability to apply the often intangible, strange realm of
quantum to familiar ideas. Until the day when Alice and Bob can play tic-tac-toe on the world’s
first quantum computer, we will patiently wait, querying how quantum mechanics can upend our
world–from classical mechanics to classical games.
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