
Introduction to Quantum Error Correction
Thomas Propson | tcpropson@uchicago.edu

March 23, 2020

1 Quantum Errors

In the proceeding, we will develop techniques for undoing unwanted transformations to a
quantum system. We will call these unwanted transformations ”quantum errors”. First, it is
useful to consider how classical errors differ from quantum ones. In classical hardware, such
as the platter of a hard disk drive, the orientation of a local mangetic dipole moment in a
ferromagnetic material is used to encode a binary bit, either 0 or 1. The magnetic dipole
moment is produced by electrons in the material’s atoms aligning their spin orientations and
hence their intrisic magnetic dipole moments. This alignment is energetically favorable due
to the ”exchange energy” arising from Fermi-Dirac statistics. So, if an external magnetic
field exerts a torque on a single electron’s magnetic dipole moment sufficient to change its
orientation relative to the ensemble, the electron will tend to realign its magnetic dipole
moment with the ensemble. The situation is different in quantum hardware, where an
experimentalist seeks to control the superposition of spin states of a single electron. There is
no ensemble pressure for the individual electron to maintain its configuration in the presence
of external noise. Further, in the classical case, the orientation of the material’s electric
dipole moment can only undergo discrete changes, say from 0 to 1. In the quantum case,
we know that the spin of an individual electron exists in a superposition of the spin-up and
spin-down states, which is discribed by a continuum.

Take the case of an isolated electron with the hamiltonian H = ω σz
2

+ u(t)σx
2

. This
particle experiences a constant B-field in the z direction, generating a precession about the
z-axis of the Bloch sphere at frequency ω. We may apply a B-field in the x direction at an
amplitude u(t) of our choosing. Experimentally, we may be controlling the B-field in the x
direction by supplying Helmholtz coils with a current according to u(t). However, we know
that the thermal excitations of electrons in the cable that connects our function generator to
our Helmholtz coils may lead to a B-field in the x direction behaving like u(t) + ε(t). Such
an imperfection will induce errors in rotations about the x-axis of the Bloch sphere. For
example we may intend to rotate by π radians about the x-axis |0〉 → |1〉 but instead rotate
by π + ε radians about the x-axis |0〉 → −i sin

(
ε
2

)
|0〉+ cos

(
ε
2

)
|1〉. It would be convenient if

we could describe any quantum error by a unitary operator E acting on our state |ψ〉.
However, it is not obvious that we can always describe the evolution of our system by

a unitary operation. In cases where our system exhibits dissipation, it loses energy, hence
information, to the environment. This is equivalent to saying that the transformation does
not preserve trace, and is not unitary. An example that the reader may have encountered
in an undergraduate experimental physics sequence is the decay of a neutron into a proton,
electron, and electron neutrino n → p + e + νe. Say that at some time t0 we always detect
a neutron. This decay follows poisson statistics so we know that at some later time t we

will detect a neutron with probability e
−(t−t0)

τ . In the density matrix formalism, we write

1

mailto:tcpropson@uchicago.edu

Tr(ρn(t)) = e
−(t−t0)

τ to indicate that finding a neutron in any state is equal to the given
probability. However, we know that the probability of finding a proton, electron, and electron

neutrino is inversely related to that of finding a neutron, Tr(ρp(t)⊗ρe(t)⊗ρν(t)) = 1−e
−(t−t0)

τ .
Thus, Tr(ρn⊗ρp⊗ρe⊗ρν) = 1 for all t. So we see that, although the evolution of our principal
system ρn is not trace-preserving, the evolution of the principal system and the channels it
decays into is trace preserving.

The quantum operation formalism is useful for describing evolutions of this type. We
start by considering a principal system on a Hilbert space Ha coupled to an environment
on a Hilbert space Hb. We write ρab = ρa ⊗ ρb. We can evolve the joint system under a
unitary operation ρ

′

ab = UρabU
†. We may put our environment in some initial state |b0〉 then

ρab = ρa ⊗ |b0〉 〈b0|. We have

ρ
′

a = Trb(ρ
′

ab)

=
∑
k

1⊗ 〈bk| (U(ρa ⊗ |b0〉 〈b0|)U †)1⊗ |bk〉

=
∑
k

EkρaE
†
k

{Ek} are sometimes referred to as Kraus operators. {Ek} are not necessarily unitary. This
representation is useful because we can consider how the principal system will evolve without
having to consider the many degrees of freedom of our environment. We will only need
d2 linearly independent Kraus operators where d = dim(Ha) because that is sufficient to
represent any action on ρa.

In analogy to the measurement operator formalism, one may obtain [8]

ρka =
EkρaE

†
k

Tr(EkρaE
†
k)

(1)

which describes the state after the kth outcome has occurred. The kth outcome will occur
with probability Tr(EkρaE

†
k).

We consider the example of amplitude damping. This situation arises when, for instance,
an excited electron spontaneously emits a photon. Let |0〉 be the electron ground state
and |1〉 be the excited state. Suppose that the electron decays to the ground state with
probability p at every instant. If the electron is initially in the ground state, it will stay in
the ground state with probability 1. If the electron is initially in the excited state, it will stay
in the excited state with probability 1 − p or decay to the ground state with probability p.
The first Kraus operator E0 represents the ”stay” trajectory and the second Kraus operator
E1 represents the ”decay” trajectory.

E0 =

(
1 0
0
√

1− p

)
E1 =

(
0
√
p

0 0

)

2

If we put the electron in the excited state ρ = |1〉 〈1| we find

ρ
′
= E0ρE

†
0 + E1ρE

†
1

= p |0〉 〈0|+ (1− p) |1〉 〈1|

Notice that our system began in a pure state Tr(ρ2) = 1 and evolved into a mixed state

Tr(ρ
′2

) = 1− 2p + 2p2. For example, take p = 1
2

then Tr(ρ
′2

) = 1
2
< 1. Thus, the quantum

error correction schemes we develop must be able to recover a pure state from the possibly
mixed state produced by an error.

To perform quantum error correction, we will entangle an ancillary system with our
principal system, and upon projective measurement of the ancillary system, the mixed state
of the principal system will be projected onto a pure state. Furthermore, we will be able to
uniquely determine the operation required to correct the pure state of the principal system
to the origninal one. Write the principal system |ψ〉, and the ancillary system |φ〉. A general
quantum error takes the form

|ψ〉 ⊗ |φ0〉 → {(Ei |ψ〉)⊗ |φi〉}

If the {φi} are unique, measuring the ancillary system with an outcome φi will determine
that the principal system is in the state Ei |ψ〉, and we will apply the operation E−1i to
correct the principal system. We will call the measurement φi the syndrome.

Furthermore, we can decompose each continuous error Ei, an arbitrary operator on a
Hilbert space, into a basis of discrete errors. First, note that any 2× 2 operator can be rep-
resented by a complex linear combination of the Pauli matrices with the identity {I,X, Y, Z}.
Then note that Y = iXZ, so we may equivalently choose the basis {I,X, Z,XZ}. So, we
decompose

(Ei |ψ〉)⊗ |φi〉 → |ψ〉 ⊗
∣∣φIi 〉

+X |ψ〉 ⊗
∣∣φXi 〉

+ Z |ψ〉 ⊗
∣∣φZi 〉

+XZ |ψ〉 ⊗
∣∣φXZi 〉

where our error correction scheme must guarantee that the {
∣∣φAi 〉} are unique for A ∈

{I,X, Z,XZ}. This decomposition generalizes to operatons on n qubits by choosing the
basis {I,X, Z,XZ}⊗n. Analogous bases can be chosen for qudits [6].

Before we introduce some schemes for quantum error correction, it is worth introducing
the quantum treshold theorem. This theorem states, in brief, that a quantum computer
with a constant probability of error p associated with each gate can execute a quantum
program with arbitrary precision in polynomial time given that p is below a fixed threshold
[1]. Without this theorem, it is not obvious that one could perform error correction with
noisy gates and hope to achieve better performance. For instance, it could have been the
case that quantum mechanics prohibited us from using noisy quantum gates to create near-
perfect quantum gates. A quantum computer that is able to achieve arbitrary accuracy is
said to be fault-tolerant. Estimates for the upper bound on p vary, and are determined by
the efficiency of the error correction scheme employed.

3

EX

• •

CX•

•

|ψ〉

|φa〉

|φb〉
(a) X error, syndorme measurement,
and correction.

H

EZ

H • • H

CZ

H

H H • H H

H H • H H

|ψ〉

|φa〉

|φa〉
(b) Z error, syndorme measurement, and correction.

Figure 1: Error (E), syndrome measurement, and correction (C) circuits for the 3-qubit repetition
code. Note that we initialize |φa〉 = |φb〉 = |0〉. The input state is allowed to be an arbitrary linear
combination of the basis states |ψ〉 = α |0̄〉+ β |1̄〉.

2 Repetition Codes

In the previous section we saw that we may decompose any quantum error in the basis
{I,X, Z,XZ}. This basis has a natural interpretation with I representing no error, X a
bit-flip error, Z a phase-flip error, and XZ a bit- and phase-flip error. It turns out that we
can correct both bit-flip and phase-flip errors, individually, by drawing on a classical error
correction code.

In the classical 3-bit repitition code, we define a logical basis 0̄ = 000 and 1̄ = 111.
We say that each logical bit 0̄, 1̄ consists of three physical bits 000, 111. When we act on
each logical bit with a gate, or radiation is incident on our classical hardware, there is a
probability that an error takes a logical bit out of the logical basis. For example, a logical
bit may suffer a bit-flip on one of its physical bits 111 → 101. In the classical case we can
directly measure our state 101. We see that 101 differs by only one bit from one of our
logical basis elements 111, and correct the state 101 → 111. However, this scheme fails if a
logical bit suffers two bit-flips 111→ 100. In this case, 100 looks more like the logical basis
element 0̄ = 000 than 1̄ = 111. It is more likely that one physical bit flipped than two, so
our error correction mechanism would mistakenly change 100 → 000. However, we can see
that repeating more physical bits 0̄ = 0d and 1̄ = 1d will increase the number of bit-flips
that each logical bit may suffer before it will become confused with the other logical basis
element. In the case where we use d physical bits per logical bit, we can correct up to bd−1

2
c

errors. In general, we will say a code of distance d that uses n physical bits to encode k
logical bits is an [n, k, d] code. The 3-bit repetition code is a [3, 1, 3] code.

In the quantum analogue of the 3-bit repetition code we define |0̄〉 = |000〉 and |1̄〉 = |111〉.
We will write Xi to denote the operator that acts with X on the ith qubit where we supress
the tensor products

⊗i−1
k=1 I ⊗X ⊗

⊗n
k=i+1 I. Consider a state in the logical basis |ψ〉 = |0̄〉

input to the circuit shown in Figure 1a. Suppose this state suffers a bit-flip error on its first
physical bit X1 |000〉 = |100〉. The first ancilla qubit will be flipped as a result of the CNOT
with the first physical qubit |φa〉 → |1〉. Similarly, the second ancilla will be flipped as a

4

result of the CNOT with the first physical qubit |φb〉 → |1〉. We call the measurement of the
ancilla qubits φaφb = 11 the syndrome. The syndrome 11 is unique for the error X1. Thus,
we can apply X1 to |ψ〉 to correct the state. Intuitively, the measurement of φa will be 1
if the first and second qubits differ in parity, while φb will be 1 if the first and third qubits
differ in parity. The Z syndrome measurement and correction circuit shown in Figure 1b is
analogous to that for X. In the X basis given by |+〉 = 1√

2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉− |1〉),

a phase-flip looks like a bit-flip Z |+〉 = |−〉.

φaφb syndrome CX correction CZ correction
00 I I
01 X3 Z3

10 X2 Z2

11 X1 Z1

Table 1: Syndrome measurements and corrections for the 3-qubit repetition code circuits.

Consider the case where we have a linear combination of errors E = 1√
2
(X + I). Suppose

the initial state is incident on the X error correction circuit |ψ〉 = |0̄〉. After applying E,
we have |ψ〉 = 1√

2
(|100〉 + |000〉). After applying the CNOTs to the first ancilla, we have

|ψ;φa〉 = 1√
2
(|1001〉+ |0000〉). Thus, if measurement yields φa = 1, we know |ψ〉 = |100〉 and

if φa = 0 then |ψ〉 = |000〉. We see that the projective measurement of the ancilla projects
the linear combination of errors on to a single one, and the correct syndrome is determined.
We have considered examples where |ψ〉 = |0̄〉 for simplicity, but all gates are linear so a
linear combination of the logical basis |ψ〉 = α |0̄〉+ β |1̄〉 may be corrected.

So, we have examined an error correction scheme that may correct arbitrary linear com-
binations of I and X or I and Z errors. In the next section, we will develop a formalism for
describing error correcting codes. This will allow us to make garauntees about what errors
the code can and cannot correct, as well as how to define logical operations on the code
space.

3 Stabilizer Formalism

Observe that, in the case of measuring an X error syndrome in the repetition code, we
first compared the parity of the first and second qubit, and then the parity of the first and
third qubit. This step is equivalent to measuring the eigenvalues of the operators Z1Z2 and
Z1Z3. Concretely, suppose |0̄〉 experiences a bit flip error on the first qubit X1. We have
Z1Z2X1 |000〉 = Z1Z2 |100〉 = − |100〉. Similarly, Z1Z3X1 |000〉 = Z1Z3 |100〉 = − |100〉. The
eigenvalue corresponding to the erroneous state X1 |ψ〉 is −1 for Z1Z2 and −1 for Z1Z3. This
measurement is analogous to the syndrome we computed for the repetition code, except we
replace a measurement of 1 or 0 on the ancillas with measurements corresponding to the
eigenvalues −1 or 1. We will say that Z1Z2 and Z1Z3 are stabilizers of our code because
they fix our code words |0̄〉 and |1̄〉, i.e. our code words are eigenvectors of the stabilizers

5

with eigenvalues +1. The stabilizer formalism will allow us to talk about stabilizers on a
code space, without having to directly refer to the code words themselves.

TakeHn as a Hilbert space over C2n equipped with the standard Hermitian inner-product.
Let Ĥn be the space of operators on Hn. The Pauli group Pn = {±1,±i} × {I,X, Y, Z}⊗n
forms a group under multiplication. Again, we can write any matrix E ∈ Ĥn as a complex
linear combination of the generators of Pn, and therfore any error on n qubits. A stabilizer
is an Abelian subgroup of the Pauli group S ⊂ Pn with −I /∈ S. We can take a linearly
independent set of m generators for S to be

M = {Mi : 1 ≤ i ≤ m} ⊂ Pn

We define the code space, i.e. the logical basis states

D = {|ψ〉 ∈ Hn : ∀M ∈M,M |ψ〉 = |ψ〉}

We say that S stabilizes D.
Here is the magic. We will use the +1 or −1 eigenvalue measurements of the stabilizers

M ∈ M to determine the syndrome of an error E. Observe that two elements in the Pauli
group G,E ∈ Pn either commute EG = GE or anti-commute EG = −GE. To see this,
first observe that each pair formed from I,X, Y, and Z either commute or anti-commute.
Then consider E,G ∈ Pn. At every position i in the tensor product expansion of E or
G we will have an operator I,X, Y, or Z. Then, either EiGi = GiEi or EiGi = −EiGi.
The commutator [E,G] will accrue all factors of 1 or −1 over the n positions. Suppose
for simplicity that an error E ∈ Pn acts on a code word. Our errors most generally are
operators in Ĥn, but as shown in section 1, we may consider only generators of the Pauli
group. Consider M ∈ M and |ψ〉 ∈ D. M |ψ〉 = |ψ〉 ∀ M ∈ M. Thus, a valid code
word will result in a measurement of the eigenvalue +1 for all stabilizers. If ME = −EM
then ME |ψ〉 = −EM |ψ〉 = −E |ψ〉. We say M detects the error E and we will use the
measurement of the −1 eigenvalue for M as part of the syndrome of E. We define the
syndrome fM : Pn → Z2

fM(E) =

{
0, [M,E] = 0

1, {M,E} = 0

Thus, a full syndrome for E is constructed by concatening the values of fM(E) for allM ∈M.
Note that because we use the stabilizers M ∈ M for syndrome measurement we must have
[M,M

′
] = 0 ∀ M,M

′ ∈ M, hence the requirement that S be Abelian. Further, we can not
have −I ∈ S otherwise −I |ψ〉 = |ψ〉 =⇒ |ψ〉 = 0 and hence D is trivial.

We have not yet considered the case where [M,E] = 0 ∀M ∈M. If E /∈M then E will
produce the all-zero syndrome 0 . . . 0 and is an ”undetected” error. These operations move
our state within the code space, and we will see that we can use some of them to define
logical operations on the code words. We define the centralizer of S

C(S) = {G ∈ Pn : ∀ S ∈ S, GS = SG}

We define the normalizer of S

N (S) = {G ∈ Pn : ∀ S ∈ S, ∃ T ∈ S s.t. GS = TG}

6

Since S is Abelian, we have C(S) = N (S). All of the logical operations on our code live
in N (S) − S. If E ∈ N (S) − S then ES = SE so SE |ψ〉 = ES |ψ〉 = E |ψ〉. But in
general E |ψ〉 6= |ψ〉. It can be shown that there exists an automorphism N (S) − S → Pk
[6]. In particular, a subset of the generators of N (S)− S are equivalence classes X̄i and Z̄i
i = 1, . . . k which map to Xi and Zi in Pk, respectively. These operations give us a natural
way to apply logical operations to our code words. We have m = n − k. So we see that a
code with m stabilizers on n phyiscal qubits will give us a k logical qubit code.

One might intuitively think that all correctable errors are those E /∈ N (S) because they
produce a non-zero syndrome. However, in order for a set of errors to be correctible, they
must satisfy more stringent requirements [9]. In particular, two errors Ea, Eb on orthogonal
code words |ψi〉 , |ψj〉 must be distinguishable, which gives the requirement

〈ψj|E†bEa |ψi〉 = 0

If the erroneous states were not orthogonal, they would produce the same syndrome. Ad-
ditionally, the syndrome of an error must not give us information about the code word,
otherwise we have learned information about the quantum state that we wish to encode,
which gives the requirement

〈ψj|E†bEa |ψj〉 = 〈ψi|E†bEa |ψi〉

These two conditions are frequently combined

〈ψj|E†bEa |ψi〉 = Cabδij

Additionally, there exists a relationship that allows us to determine if there exists a code
on n physical qubits to encode k logical qubits and correct up to t single qubit errors. This
relationship is known as the quantum hamming bound, in analogy to the classical hamming
bound [5].

2k
t∑
l=0

3l
(
n

l

)
≤ 2n

Intuitively, this formula tells us that there must be a unique representation in n physical
qubits for all possible combinations of t errors that can occur on k logical qubits. The factor
of 3 comes from the fact that we can expand any non-trivial error in X, Z, and XZ. This
relationship only holds for non-degenerate codes. Define the weight of an operator E ∈ Pn
as the number of non-identity terms that appear in its tensor product expansion. We say
the minimum distance of a stabilizer code is

dmin = min
E∈N (S)−S

weight(E)

We say that S forms a degenerate stabilizer code if S contains an element of weight less than
dmin. This is equivalent to the condition that Cab is singular.

7

4 Surface Codes

We now give an example of one of the most important stabilizer codes. The surface codes
are a family of stabilizer codes where physical qubits are placed on a 2D lattice with nearest
neighbor connectivity (2DNN). Perhaps the most famous surface code is the toric code
introduced by Kitaev [7]. The toric code employs periodic boundary conditions on the 2D
lattice consistent with a genus 1 surface, e.g. a torus. Constructing a Hamiltonian to realize
a system with properties that exhibit the structure of this code is an active area of research
in the field of topological quantum computing, and we refer the interested reader to Kitaev’s
paper. Here, we take up the planar surface code. The planar surface code is of practical
interest and can be deployed on an arbitrary quantum architecture.

We begin with a 2D lattice where a physical qubit is placed on each edge connecting two
vertices, see Figure 2. The planar surface code is defined by the stabilizersM = {Av}∪{Bp}
where

Av =
∏
e∈v

Xe Bp =
∏
e∈p

Ze

We will say Av is an X stabilizer and Bp is a Z stabilizer. e represents the index of a qubit
associated with an edge. v represents a vertex. p represents a plaquette–a surface lying inside
of three or more edges. We create a stabilizer for each vertex and plaquette in the lattice.
In the planar surface code, we also remove all of the outermost edges from two non-adjcent
boundaries of the lattice, forming smooth and rough boundaries. Smooth boundaries have X
stabilizers with 3 physical qubits and Z stabilizers with 4 physical qubits. Rough boundaries
have X stabilizers with 4 physical qubits and Z stabilizers with 3 physical qubits.

(a)

(b)

Figure 2: a) Planar surface code. Physical qubits are represented by black circles. Examples of X
and Z stabilizers are highlighted. X stabilizers are formed by 3 or 4 qubits on a vertex. Z stabilizers
are formed by 3 or 4 qubits on a plaquette. Rough and smooth boundaries are annotated. Ancilla
qubits used to measure stabilizer eigenvalues are not pictured. b) Examples of X and Z errors on a
planar surface code. The X error chain on the left is undetected by the Z stabilizers. The X error
near the bottom will produce -1 eigenvalue measurements for the adjacent Z stabilizers. Similarly,
the Z error near the top will produce -1 eigenvalue measurements for the adjacent X stabilizers.

We say that a clean surface is one where all stabilizers fix the state of the qubits they

8

act on. Equivalently, valid code words are eigenvectors with eigenvalue +1 for all stabilizers.
We will employ the X stabilizers to detect Z errors and Z stabilizers to detect X errors. If
qubit i is affected by a Z error, written Zi, the X stabilizers that contain an Xi term will
anticommute with Zi, and the erroneous state will be an eigenvector of those stabilizers with
an eigenvalue −1. We may measure this eigenvalue using an ancilla qubit, determining the
syndrome of an error. When a single stabilizer experiences two errors of the same type, the
errors will commute with the stabilizer, yielding an eigenvalue measurement of +1 for the
erroneous state. In cases where many errors occur in sequence, this can produce undetected
errors, see Figure 2b. Thus, the number of single qubit errors that the planar code can
tolerate is proportional to the minimum distance between any two non-adjacent boundaries
called the length L. The number of physical qubits required to increase the size of the
lattice is quadratic in the length, but the probability of an uncorrectable error occuring is
exponentially decreasing in the length ∝ pL with p ≤ 1.

Furthermore, the planar surface code has the nice property that each physical qubit
is involved in at most 4 stabilizers and each stabilizer acts on at most 4 physical qubits.
Although physical proximity is not required to dutifully execute the surface code protocol,
the locality of operations makes it easier to experimentally realize [2]. Note also that the
planar surface code can correct arbitrary errors, namely X, Z, and XZ, since an XZ error
will be corrected by X and Z stabilizers independently.

Figure 3: Minimum viable example of a planar surface code.

We take up the example of the minimum viable planar surface code to illustrate con-
nections with the stabilizer formalism developed in the previous section, see Figure 3. The
stabilizers for this code are generated by

M = {X0X1X2, X2X3X4, Z0Z2Z3, Z1Z2Z4}

Observe that [M,M
′
] = 0 ∀M,M

′ ∈M. By applying all possible combinations of stabilizers
to the state |00000〉 we find

|0̄〉 = |00000〉+ |11100〉+ |00111〉+ |11011〉

Define
X̄ = X1X4 Z̄ = Z3Z4

9

Observe that X̄, Z̄ ∈ N (S)−S. Our choices could have been X̄ = X0X3 or Z̄ = Z0Z1. What
is important is that each of these operations use two physical qubits on the same stabilizer,
and hence commute with that stabilizer. We have

|1̄〉 = X̄ |0̄〉 = |1010〉+ |01110〉+ |01001〉+ |10010〉

Note that ∀M ∈M, M |1̄〉 = |1̄〉. Also, Z̄ |1̄〉 = − |1̄〉.
As we extend the planar surface code to lengths greater than our minimum viable ex-

ample, the code will be able to tolerate more errors, but will still encode one logical qubit.
Further, we have not described a way to realize a univeral gate set using this code, or con-
struct interactions between two logical qubits. However, the same principles demonstrated
here are applicable to codes that can accomplish those tasks, which the reader should now
be able to attack [3] [4].

5 Acknowledgements

This work was submitted in partial fulfillment of the final project requirement for PHYS
24300/1. The author thanks Srivatsan Chakram for helpful conversations and insight. Quan-
tum circuits were typeset using qcircuit. Graphics were produced in inkscape, an open-source
vector graphics tool.

References

[1] Aharonov, D., and Ben-Or, M. Fault-tolerant quantum computation with constant
error rate. SIAM Journal on Computing (2008).

[2] Córcoles, A. D., Magesan, E., Srinivasan, S. J., Cross, A. W., Steffen, M.,
Gambetta, J. M., and Chow, J. M. Demonstration of a quantum error detection
code using a square lattice of four superconducting qubits. Nature communications 6, 1
(2015), 1–10.

[3] Devitt, S. J., Munro, W. J., and Nemoto, K. Quantum error correction for
beginners. Reports on Progress in Physics 76, 7 (2013), 076001.

[4] Fowler, A. G., Stephens, A. M., and Groszkowski, P. High-threshold universal
quantum computation on the surface code. Physical Review A 80, 5 (2009), 052312.

[5] Gottesman, D. Class of quantum error-correcting codes saturating the quantum ham-
ming bound. Physical Review A 54, 3 (1996), 1862.

[6] Gottesman, D. Stabilizer codes and quantum error correction. arXiv preprint quant-
ph/9705052 (1997).

[7] Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Annals of Physics 303,
1 (2003), 2–30.

10

http://theory.uchicago.edu/~sethi/Teaching/P243-W2020/classes243.html
http://theory.uchicago.edu/~sethi/Teaching/P243-W2020/classes243.html
https://ctan.org/pkg/qcircuit?lang=en
https://inkscape.org

[8] Nielsen, M. A., and Chuang, I. Quantum computation and quantum information.
American Association of Physics Teachers, 2002.

[9] Xie, Y. Quantum Error Correction and Stabilizer Codes. PhD thesis, University of New
South Wales, Sydney, Australia, 2016.

11

	Quantum Errors
	Repetition Codes
	Stabilizer Formalism
	Surface Codes
	Acknowledgements

