1. Understanding the spectrum for simple potentials is very important. Consider an electron of mass m in one dimension subject to a potential

$$V(x) = g\delta(x)$$

where g is a constant and $\delta(x)$ is the Dirac delta-function. This system approximates a highly localized potential around the point $x = 0$.

(i) For what sign(s) of g is there a quantum mechanical bound state?

(ii) Please find a relation between the bound state energy E and g.

(iii) Now consider the double well potential

$$V(x) = g\delta(x + a) + g\delta(x - a).$$

Again find a relation between E, g and a for any bound states. What happens to the energy E of these states as $a \to 0$?

2. This problem is inspired by a discussion after a lecture from years past. The current more tractable form of the problem was proposed by Rhys Povey, who solved the original much less tractable version of the problem. For a repulsive square well potential of width a and height V_0, we saw in lecture that perfect transmission is possible as long as $\sin(ka) = 0$ where k and the energy of the particle are related by

$$\hbar k = \sqrt{2m(E - V_0)}.$$

Suppose for an experiment, you want to engineer a potential that allows perfect transmission of particles with energies E_1, E_2, or E_3.

(i) First let’s explore a warm up case. Given two incoming particles with arbitrary but given energies E_1 and E_2, design a square wall potential (width and height) that permits perfect transmission of both particles.

(ii) Using two square walls of the type above, it is possible to allow a third arbitrary energy E_3 to also perfectly transmit through the system. Find the spacing between the two walls that allows perfect transmission of three given energies E_1, E_2 and E_3. You may assume, without loss of generality, that E_3 is greater than E_1 and E_2.

Some abbreviations: S - Shankar.