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Preface

Since its early beginnings in the nineteenth century the theory of finite
groups has grown to be an extensive and diverse part of algebra. In the
beginning of the 1980s, this development culminated in the classification of
the finite simple groups, an impressive and convincing demonstration of the
strength of its methods and results.

In our book we want to introduce the reader—as far as an introduction can
do this—to some of the developments in this area that contributed to this
success or may open new perspectives for the future.

The first eight chapters are intended to give a fast and direct approach to
those methods and results that everybody should know who is interested
in finite groups. Some parts, like nilpotent groups and solvable groups, are
only treated as far as they are necessary to understand and investigate finite
groups in general.

The notion of action, in all its facets, like action on sets and groups, coprime
action, and quadratic action, is at the center of our exposition.

In the last chapters we focus on the correspondence between the local and
global structure of finite groups. Our particular goal is to investigate non-
solvable groups all of whose 2-local subgroups are solvable. The reader will
realize that nearly all of the methods and results of this book are used in
this investigation.

At least two things have been excluded from this book: the representation
theory of finite groups and—with a few exceptions—the description of the
finite simple groups. In both cases we felt unable to treat these two themes
in an adequate way within the framework of this book.

For the more important results proved or mentioned in this book we tried
to give the original papers as references, and in a few cases also some with
alternative proofs. In the Appendix we state the classification theorem of
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the finite simple groups and also some of the fundamental theorems that are
related to the subject of the last chapters.

The first eight chapters are accompanied by exercises. Usually they are not
ordered by increasing difficulty and some of them demand serious thinking
and persistence. They should allow the reader to get engaged with group
theory and to find out about his or her own abilities.

The reader may want to postpone and revisit later some of the apparently
more difficult exercises using the greater experience and insight gained from
following chapters.

It should be pointed out here that—with the exception of the first chapter—
all groups under consideration are meant to be finite.

Our special thanks go to our colleague H. Bender. Without him this book
would not have been written, and without his encouraging support it would
have taken a different shape.

We would like to thank J. Hall for reading the entire manuscript and
A. Chermak for reading parts of it. We are also grateful to B. Baumann,
D. Bundy, S. Heiss, and P. Flavell for their helpful comments and sugges-
tions.

A German version of this book has been published in 1998 as a Springer-
Lehrbuch.

Erlangen, Germany Hans Kurzweil
Kiel, Germany Bernd Stellmacher
February 2003
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Chapter 1

Basic Concepts

In this first chapter we introduce some of the basic concepts of finite group
theory. Most of these concepts apply to arbitrary groups, whether finite or
infinite. For that reason we will make no assumption (as we will in the later
chapters) that the objects under consideration are finite.

1.1 Groups and Subgroups

A nonempty set G is a group, if to every pair (z,y) € G x G an element
xy € G is assigned, the product of x and y, satisfying the following axioms:
Associativity: z(yz) = (zy)z for all z,y,z € G.

Existence of an identity: There exists an element e € G such that ex =
ze=2x forallz € G.!

Existence of inverses: For every x € G there exists an element 27! € G
such that

A group G is Abelian? if, in addition:
Commutativity: zy = yx for all z,y € G.

'If also €’ is such an identity, then ¢ = ee’ = e. Thus, the identity of G is uniquely
determined.

2 Abelian groups are often written additively. In this case the element assigned to the
pair (x,y) is denoted by x + y and called the sum of z and y.



2 1. Basic Concepts

In the following, G is always a group. Associativity implies the gener-
alized associative law: Every (reasonable) bracketing of the expression
x1T9 - --x, of elements x; € G gives the same element in G. This element
is then denoted simply by z1x2 - - - .

The identity e of G may be denoted by 1 (or 1¢). If G is Abelian, written
additively, then e may be denoted by by 0 (or O¢).

We write

G? = {z e G|z #e}.

Let = € G and suppose that y; and ys are two inverses for x. Then

yo = (n12)y2 = y1(zy2) = 1.

Hence the inverse of x is uniquely determined. This shows that for a,b € G
the equations
ya = b and ax =0

have unique solutions in GG, namely

I and z = a b

y = ba
Thus, the right and left cancellation laws hold in groups.

For z,a € G set

2% = a 'za.

Such an element z® is said to be a conjugate of x. More precisely, x% is
the conjugate of = by a.

1.1.1  For a € G the applications
—1 a

Tr—xTa, T ar, T, THT

define bijective mappings from G to G. O

For x € G we define the powers of z
=1, x =ux,...,7 = (z")xz forn € N 3

and

3nz =x 4 --- 4+ (n summands) for groups written additively.
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Then

n-times

and by induction on n one obtains the laws of exponents
e = 2'2? and (2')! = 2"
for all 7,5 € Z.

A group G is finite if G contains only finitely many elements. In this case
the number of elements is called the order of G, denoted by |G|. Every
finite group G = {x1,...,x,} of order n can be described by its group
table T = (t;;); where t;; = z;z; € G. Thus, T is an (n x n)-matrix with
entries in G. For example,

1 d d* t td td?

1|1 d d t td td?
d|d d* 1 td* t td
| d 1 d td td® t

t |t td td> 1 d d?
td | td td*> t d* 1 d
td> | td®> t td d d* 1

is the group table of a non-Abelian group of order 6.* We suggest the reader
use this example as a test ground for the coming notation and definitions.

The group G is cyclic if every element of G is a power of a fixed element g.
In this case we write

G = (g).

The multiplication in a cyclic group is determined by the laws of exponents;
in particular, cyclic groups are Abelian.

For i, j, k € Z we write i|j, if ¢ is a divisor of j, and
i=j (modk) if E|(i—yj).

Note that every integer is a divisor of 0.

“Putting d := (; :2,) :13) and t := (é f g) one can show that G is the group of permutations

on {1, 2,3}, the symmetric group S3 (see 4.3).
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1.1.2  Let G = {g) be a cyclic group of order n. Then

G - {1797' A 7gn71}7
and the following hold:

() mn=min{meN|g¢g" =1}
(b) ForzelZ: ¢g°=1 <= n|z

(¢) Fori,jke{0,1,....n—1}: g¢'¢o=¢" «<—= i+j=k (modn).

Proof. Since |{g)| < oo there exist a,b € N, a < b, such that g% = g° and
thus ¢®~® = 1. Hence, there exists

[ ;= min{meN|g¢g" =1}

If ¢¢ = ¢ for 0 <i< j<1l-1,then ¢=* = 1 which contradicts the
minimality of {. Thus, all the elements 1,g,...,¢" ! are distinct. Since

every integer z € 7Z can be written
z=0It+r with teZ re{01,...,1—-1}

we obtain
t . r

gz _ gltgr _ (gl) g = gr'
Therefore G = {1,g,...,¢""'} and [ = n. Similarly we obtain (a) and (b)
and thus also (c). O

A nonempty subset U of GG is a subgroup of G if U is a group with respect
to the multiplication in G. Clearly, this is equivalent to saying that for all
z,y € U also zy and z~! are in U; and we then write U < G. If, in
addition, U # G, then U is a proper subgroup of G, and we write U < G.

Every group possesses the trivial subgroup U = {1}. We then abuse nota-
tion and write simply U = 1.
Evidently, the intersection of any collection of subgroups of G is itself a

subgroup.

A subgroup U # 1 is a minimal subgroup of G if no other nontrivial
subgroup of G is contained in U, and a subgroup U # G is a maximal
subgroup if U is not contained in any other proper subgroup of G.

Evidently, every nontrivial finite group possesses minimal and maximal sub-
groups.
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1.1.3 A nonempty finite subset U of G is a subgroup if for all x,y € U
also xy s in U.

Proof. For x € U the mapping ¢: u — uzx from U to U is injective and

thus also surjective since U is finite. It follows that 1 = 29" € U and
1

xrl=19" eU. O

For a nonempty subset X of G,
(X) = {:U’flxjj |z, € X, zi € Z, j € N}
is the subgroup generated by X. We set (@) := 1. We also write
(X) = (z1,...,2p)

in the special case that X is a finite set {z1,...,x,}. If X ={X1,...,X,}
is a finite set of subsets of GG, we set

(X) = (X1,...,X,) = (U X;).

1.1.4 Let X be a subset of G. Then (X) is a subgroup of G. More
precisely, (X) is the smallest subgroup of G containing X .

Proof. With a,b € (X) also ab and a~! are in (X). Thus (X) is a
subgroup. Every subgroup of G containing X also contains (X). O

Sometimes properties of the generating set X already determine the struc-
ture of (X). For example, if xy = yx for all z,y € X C G, then (X) is an
Abelian group.

Let g € G. The cyclic subgroup (g) is the smallest subgroup of G that
contains g. If (g) is finite, then

is the order of g. According to 1.1.2 o(g) is the smallest positive integer n
such that ¢g" =1.
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For two nonempty subsets A, B of G let
AB := {ablac A,be B} and A':= {a'|ac A}

AB is the complex product (or simply the product) of A and B. This
product defines an associative multiplication on the set of nonempty subsets
of G. In addition, we have

(AB)™! = B71A 1

In the cases A = {a} resp. B = {b}, we write aB resp. Ab instead of
AB . Moreover, for g € G we set

BY := g~'By,

and say that BY is a conjugate of B in G (more precisely, the conjugate
of B by g). For any A C G set

B4 .= {B%| a e Al
Note that for a nonempty subset U of G:

U<G < UU=U=U"".

1.1.5 Let A and B be subgroups of G. Then AB is a subgroup of G if
and only if AB = BA.

Proof. From AB < G we get,
(AB) = (AB)™' = B™'A™! = BA.
If AB = BA, then
(AB)(AB) = A(BA)B = A(AB)B = AABB = AB

and

(AB)™' = B7'A™! = BA = AB.
Thus AB < @. O
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1.1.6 Let A and B be finite subgroups of G. Then

_ AllB]

AB| = .
ABl = Fa

Proof. We define an equivalence relation on the Cartesian product A x B:
(al,bl) ~ (CLQ,bz) < a1by = agbs.

Then |AB| is the number of equivalence classes in A x B. Let (aj,b1) €
A x B. The equivalence class

{ (a2,b2) | a1by = agby }.
contains exactly |A N B| elements since
asby = a1by <— al_lag = blbgl (E AﬂB)
<= a9y = a;d and by = dby for some d e AN B.

This gives the assertion. O

Let U be a subgroup of G and z € G. The complex product
Ur = {ur|ueU} resp. zU = {zu|ueU}
is a right coset, resp. a left coset, of U in G. The application
Uz (Uz)™! = 27U

defines a bijective mapping from the set of right cosets of U to the set of left
cosets of U. If the set of right cosets of U in G is finite then the number of
right cosets of U in G is the index of U in G, denoted by |G : U|.°

Since u — uz is a bijective mapping from U to Uz (1.1.1) we get in addition
Ul = |Uz| = [2U]
for all x € G. As
r = l1lgx € Ux
the right cosets of U cover the set G. Moreover, for y,z € G

1

Ur =Uy <= yr= € U < y € Ux.

®The following statements hold for left cosets as well as for right cosets.
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Hence any two right cosets of U are either equal or disjoint.°

This yields:

1.1.7 Lagrange’s Theorem.” Let U be a subgroup of the finite group
G. Then
G| = |U]|G: Ul.

In particular, the integers |U| and |G : U| are divisors of |G| . O
Because (g) is a subgroup of G for all g € G we get from 1.1.7:

1.1.8 For every finite group G and every g € G, the order of g divides
Gl

Let U < G and S C G. Then S is a transversal of U in G2 if S con-
tains exactly one element of every right coset Uz, x € G; and S is a left

transversal of U in GG if S contains exactly one element of every left coset
of U in G.

1.1.9 Let S CG. Then S is a transversal of the subgroup U in G if and
only if G=US and st™* ¢ U forall s#t in S.

If S is a transversal of U in G, then the mapping
UxS—G with (u,s)— us

1s bigective.
Proof. Us =Ut <= st~ 1 eU. O

An important special case is:

1.1.10 LetU and S be subgroups of G such that G =US and UNS =1,
then S s a transversal of U in G. O

6 And the right cosets of U are the equivalence classes of the equivalence relation

Yy~ = yz ' e U

"Compare with [75] and [42], p. 504.
80r set of right coset representatives for U in G.
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Such a subgroup S is called a complement of U in G.

The following observation is sometimes useful:

1.1.11 Dedekind Identity. Let G = UV, where U and V are sub-
groups of G. Then every subgroup H satisfying U < H < G admits the
factorization H =U(V N H).

Proof. Every coset of U in G and thus every coset of U in H contains an
element of V. O

According to Lagrange’s Theorem the divisors of the order of a finite group
are important invariants of G.

Let P be the set of all positive prime integers, and for n € N set
w(n) = {p € P| p divides n}.
For a finite group G set
7(G) = m(|G]).

An element z € G is a p-element (p € P) if o(x) is a power of p, and
G is a p-group if 7(G) = {p}, i.e., |G| is a power of p. Observe that the
identity element (resp. the trivial group) is a p-element (resp. p-group) for
every p € P. A p-subgroup is a subgroup which is a p-group.

It follows from 1.1.8 that in a p-group every element is a p-element. The
converse is also true; this is a consequence of Cauchy’s Theorem (3.2.1 on
page 62).

Exercises

Let A, B, and C' be subgroups of the finite group G.

1. If B<A,then |[A:B|>|CNA:CnNB|.
2. Let B < A If z1,...,2, is a transversal of A in G and v1,...,ym a

3. |G:ANB|<|G:Al|G: B|.
4. AU B is a subgroup of G, if and only if AC B or B C A.
5. Let G = AAY for some g € G. Then G = A.
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Let |G| be a prime. Then 1 and G are the only subgroups of G.
G has even order if and only if the number of involutions? in G is odd.

If y2=1 for all y € G, then G is Abelian.

© © N o

Let |G| = 4. Then G is Abelian and contains a subgroup of order 2.
10. If G contains exactly one maximal subgroup, then G is cyclic.

11.  Suppose that A #1 and AN A9 =1 for all g € G\ A. Then

\UA9|2|7G'+1.
geiG

12. If A#G, then G #£ |J A9.
geG

13. Let A9 ={A;,...,A,}. Then (Ay,...,A,)=A;---A,.
1.2 Homomorphisms and Normal Subgroups

Let G and H be groups. A mapping
v: G— H,
(which may be written “exponentially,” as z — z¥) is a homomorphism

from G to H, if
(xy)? = z¥y¥ forall x,y € G.

1.2.1  If the homomorphism ¢ : G — H s bijective, then also the inverse
mapping @' is a homomorphism.

Proof. The equality

follows from

9Involutions are elements of order 2; see p. 34.
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Let ¢ be a homomorphism from G to H, and let X C G and Y C H. We
set
X? = {2¥|z € X}, Y? ={geG|¢g® €Y}, and

Ker p := {x € G| 2¥ = 1y}, Im ¢ :=G*.

We refer to X% as the image of X and Y¥ ™ as the inverse image of Y

(with respect to ). Further, Ker ¢ (= 1%71) is the kernel of ¢ and we
write Im ¢ for the image of .

The homomorphism ¢ is an epimorphism if Im ¢ = H, an endomor-
phism if H = (G, a monomorphism if ¢ injective, an isomorphism if ¢
bijective, and an automorphism if ¢ is a bijective endomorphism.

If ¢ is an isomorphism, then G is said to be isomorphic to H; in which
case we may write G = H.

The following points are immediate consequences of the group axioms:

o (lg)¥=1p.

o (z71H)Y=(2%)"! forall x € G.10

e [If U is a subgroup of GG, then U¥ is a subgroup of H.

e If V is a subgroup of H, then Ve s a subgroup of G.
o (X)¥=(X¥) for X CG.

1.2.2 Let N =Ker ¢. Then for all x € G

Nz ={yeG|y? = 2¥} = zN.

Proof. y¥ = 2¥ <= y?(2¥) ! =1 — yP(a7)? =1
— (¥ =1 <<= yzteN
< y € Nz,

and similarly y? = 2¥ <= (2¥) 1y =1 < ... <= ycaN. O

A subgroup N of G that satisfies

Nz = N forall z € G

YTnstead of (z¥)~' we often write 7.
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is a normal subgroup of G (or is normal in G). We write N < G if N
is normal in GG. If N is normal in G, then any right coset of IV is also a left
coset of N, and one may speak simply of the cosets of N in G.

Since
Nz = 2N <= N = 2 'Nz (= N%)

one obtains:

1.2.3 A subgroup N is normal in G if and only if y* € N for all y € N
and x € G. O

The group G is itself a normal subgroup of G, and G always possesses the
trivial normal subgroup 1. If G # 1, and 1 and G are the only normal
subgroups of G, then G is simple. For example, a group of prime order is
a simple group (1.1.7 on page 8).

The statements below, which follow directly from the definition of a normal
subgroup, will be used frequently.

e For every homomorphism ¢ of G, the image (resp. inverse image) of
any normal subgroup of G (resp. G¥) is normal in G¥ (resp. G).

e The product and intersection of two normal subgroups of G is normal
in G.

e If U is a subgroup of G and N is normal in GG, then U N N is normal
in U.

e If U is a subgroup of GG, then

Ug = () U’

is the largest normal subgroup of G that is contained in U.

e If X C G, then (X%) is the smallest normal subgroup of G that
contains X.

Let N be a normal subgroup of G and G/N the set of all cosets of N in G.
For Nz, Ny € G/N

(Nz)(Ny) = N(zN)y = N(Nz)y = Nay



1.2. Homomorphisms and Normal Subgroups 13

and thus
(%) (Nz)(Ny) = Nzy forall z,y € G.

Hence, this complex product defines an associative multiplication on the set
G/N. Evidently, N = Nl¢ is the identity of G/N (with respect to this
multiplication), and Nz~! is the inverse of Nz. Thus:

1.2.4 Let N be a normal subgroup of G. Then G/N is a group with
respect to the complex product. The mapping

v :G— G/N with z+— Nx

1s an epimorphism. O

Here the second part of 1.2.4 follows from ().

The group G/N (one reads G modulo N) described in 1.2.4 is the factor
group of N in GG, and the corresponding ¢ is the natural homomorphism
from G to G/N.

By 1.2.2 the normal subgroups of GG are exactly the kernels of the homomor-
phisms of G. From 1.2.2 and 1.2.4 we derive the following:

1.2.5 Homomorphism Theorem. Let ¢ be a homomorphism from G
to H. Then
G/Ker ¢ — H with (Ker ¢)x +— x¥

1 @ monomorphism. In particular
G/Ker ¢ = Im ¢. O

Let U be a subgroup and N a normal subgroup of G. Then by 1.1.5 UN is
a subgroup of GG, and thus N is a normal subgroup of UN.

Two direct consequences of 1.2.5 are the Isomorphism Theorems:
1.2.6 Let U be a subgroup and N a normal subgroup of G. Then
¢:U—-UN/N with uw~— uN
15 an epimorphism with Ker o = U NN, and
U/UNN = UN/N. O
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1.2.7 Let N and M be normal subgroups of G such that N < M. Then
¢:G/N - G/M with Nzw— Mx
is an epimorphism with Ker ¢ = M /N, and
(G/N)/(M/N) = G/M. O

It is important also to observe that the homomorphism theorem gives a
bijection (U — U%) from the set of all subgroups U < G containing Ker ¢
to the set of all subgroups of Im ¢.

Often it is convenient to use the bar convention for subgroups and elements
of G/N:
U :=UN/N for U <G and 7 := zN fiir z € G;

in particular G = G/N.

In general, A < N J G does not imply A < G. A subgroup A is a sub-
normal subgroup of G (or is subnormal in G), if there exist subgroups
Al, . ,Ad such that

S A=A4,<A,<--- <414 =G.

We then write A << G and call § a subnormal series from A to G.
Evidently, one gets

A< B<<A G = A<QG.

Because of this transitivity property the notion of subnormality plays an
important role in the investigation of finite groups. We will use this notion
later, from Chapter 5 on. Here we only give some elementary properties of
subnormal subgroups which follow directly from the definition.

1.2.8 Let A and B be subnormal subgroups of G.

(a) UNA I U for ULQG.
by AnNB <44 G.

(¢) Let g be a homomorphism of G. Then the image (resp. inverse image)
of any subnormal subgroup of G (resp. G¥) is subnormal in G¥ (resp.

qQ).
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Proof. (a) Let S be a subnormal series from A to G. Then
UNA=UNA; < ... <UNA;_1 <UNA; =U

is a subnormal series from U N A to U.
(b) From (a) it follows that AN B J<4 B << G.

(c) This follows from the corresponding statements about normal subgroups.
O

Let B<A<G. Then A/B is a section of G.

Exercises

Let G be a group.

1. Every subgroup of index 2 is normal in G.

2. Show that there are exactly two nonisomorphic groups of order 4 and com-
pute their group tables.

3. Let N be a normal subgroup of G and |G : N| = 4.

(a) G contains a normal subgroup of index 2.

(b) If G/N is not cyclic, then there exist three proper normal subgroups
A, B, and C of G such that G=AU BUC.

4.  Let G be simple, |G| # 2, and ¢ a homomorphism from G to H. If H
contains a normal subgroup A of index 2, then G¥ < A.

5. Let z€ G, D:={a9]| g € G}, and U; < G for i =1,2. Suppose that
<D> =G and D QUl UUQ.

Then U =G or Uy =G.

6. Let G # 1 be a finite group. Suppose that every proper subgroup of G is
Abelian. Then G contains a nontrivial Abelian normal subgroup.

1.3 Automorphisms

In the following, GG is a group. The set Aut G of all automorphisms of G,
with multiplication given by

af:z— () (z€G, a,f€AutqG)
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is a group, the automorphism group of G. The identity mapping is the
identity of Aut G, and the inverse mapping a~! the inverse of a (see 1.2.1).

Automorphisms map finite subgroups (resp. elements) to subgroups (resp.
elements) of the same order. For a € GG, the mapping

0o: G— G with z+—2* (=a 'za)
is bijective by 1.1.1. Since

(zy)® = a tzaa tya = (a 'za)(a"ya) = %,

g is an automorphism of G, the inner automorphism induced by a.

The mapping
p: G—AutG

given by a — ¢, is a homomorphism from G to Aut G, since
2 = b la teab = (29)°.
Hence, the set of inner automorphisms of G,
InnG = {p,|aeG},
is a subgroup of Aut G. Moreover, the equality
BB = @os (B € AULG, a€q)

shows that InnG is a normal subgroup of AutG.

We set
Ker p = {r € G| 2% = z for all a € G} =: Z(G).

The homomorphism theorem then yields
G/Z(G) =2 InnG.
The group Z(G) is called the center of G.

For later use we note:

1.3.1  Suppose that G/Z(G) is cyclic. Then G is Abelian.
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Proof. There exists g € G such that G/Z(G) = (¢9Z(G)) and thus
G = Z(G)(9)-

Since (g) is Abelian all pairs of elements of G commute. O

By definition a subgroup N of G is normal if and only if
N® = N for all a € G.
Thus, a subgroup of GG is normal if and only if it is mapped to itself by every

inner automorphism of G.

A subgroup U of G is a characteristic subgroup of G (or is characteristic
in G), if

U“ = U for all a € AutG.
We write U char G in this case.

Evidently, characteristic subgroups are normal in G. Moreover, 1 and G are
characteristic subgroups of G. Another example of a characteristic subgroup
is Z(G). Indeed, for x € Z(G), g € G, o € Aut G,

%% = (z9)" = (92)" = g"a*%,
and since G = {¢g”| g € G} we have z* € Z(G) .

We note two properties of characteristic subgroups, which we will use fre-
quently.

1.3.2  Let N be a normal subgroup of G and A be a characteristic subgroup
of N.

(a) A is normal in G.

(b) If N is characteristic in G, then also A is characteristic in G.

Proof. (a) Let a € G and ¢, be the inner automorphism of G induced
by a. Then the restriction of ¢, to N is an automorphism of N since N is
normal in G. Hence, A is invariant under ¢, for all a € G, i.e., A is normal

in GG.



18 1. Basic Concepts

(b) Since N is now characteristic in G one can replace ¢, in the above
argument by an arbitrary automorphism of G. O

The above property (b) shows that being characteristic (as being subnormal,
see page 14) is a transitive property.

We will now introduce a notion, which will prove to be greatly convenient.
Let X be a group and
p: X = AutG

be a homomorphism from X to AutG. Then we say that X acts on G
(with respect to ¢). We set

and get
(gh)* = g°h* and (g%)! = g%

for all g,h € G and z,y € X.

A subgroup U of GG is X-invariant if for all = € X:
U ={u'|uelU} = U.

If U is an X-invariant subgroup of GG, then X acts on U with respect to the
homomorphism X — Aut(U) induced by ¢. If N is an X-invariant normal
subgroup of G, then X acts on the factor group G/N by

(Ng)* :== Ng*.

It is evident that every subgroup X of AutG acts on G (with respect
to ¢ =id). In the cases X = AutG resp. X = InnG the X-invariant
subgroups are the characteristic resp. normal subgroups of G.

Every subgroup X of G acts on G with respect to ¢|x, where ¢ is the
homomorphism from G to InnG defined on page 16 (conjugation). When
we speak of X-invariant subgroups—where X is a subgroup of G—without
mentioning ¢, then we always mean the action by conjugation.

Let n be a homomorphism from G to the group H, and let X be a group
that acts on both G and H. Then 7 is an X-homomorphism, if

(g°)" = (¢g")* forall ge G, xe€ X.
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(In the same way we define X-isomorphism and X-automorphism). Such
an X-homomorphism maps X-invariant subgroups of G to X-invariant sub-
groups of H, and the inverse images of X-invariant subgroups of H are X-
invariant subgroups of GG. In particular, Ker n and Im n are X-invariant
subgroups.

For example, X := G acts by conjugation on G, but also on H by
= b (he H, z€Qq).

This implies
_ n
(g9)" = (a7'g2)" = (¢")"" = (¢")",
and thus 7 is a G-homomorphism. If 7 is surjective, then the G-invariant
subgroups of H are precisely the normal subgroups of H.

If n: G - H is an X-isomorphism, we write G =Zx H.

The mappings introduced in the Homomorphism Theorem 1.2.5 and its two
corollaries, 1.2.6, 1.2.7, yield the following results:

e Let n be an X-homomorphism of G. Then

G/Ker n Zx Im n.

e Let U and N be X-invariant subgroups of G. Then

U/UNN ~x UN/N.

e Let N <M be X-invariant normal subgroups of G. Then

(G/N)/(M/N) =x G/M.

Exercises

Let G be a group.

1. Let N be characteristic in G. The automorphisms « of G satisfying o|y =1
form a normal subgroup of AutG.

2. The automorphisms « of G satisfying U* = U for all subgroups U of G form
a normal subgroup of AutG.

3. Let o« € AutG and [{z € G| IO‘:.T}|>@. Then a = 1.
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4.  The group G is Abelian if and only if the mapping
G—G with z—a2' (z€Qq)

is an automorphism of G.

5.  Let G be finite and a € AutG such that z% # z = 2 for all z € G#,
Then the following hold:

(a) For every x € G there exists y € G such that z =y~ 1y°.
(b) G is Abelian of odd order.

6. Let N <G and U < G such that G = NU. Then there exists a bijection,
preserving inclusion, from the set of subgroups X satisfying U < X < G to
the set of U-invariant subgroups Y satisfying UNN <Y < N.

7.  Let G be finite with Z(G) =1, and set A := AutG and I :=InnG.

(a) Ca(l)= 1.1

(b)  Suppose that [ is characteristic in A, i.e., I = I* for all a € Aut A.
Then Aut A = Inn A.

(¢)  Suppose that G is simple. Then Aut A = Inn A.

8. Let GLy(C) be the group of all invertible 2 x 2-matrices over the field of
complex numbers C, and let

G = <(é _OZ) (_01 (1))>§GL2((C).

The group G is called a quaternion group (of order 8).

(a) |G| =28.

b) 12(G)] =2

(c) Every element of G\ Z(G) has order 4.
(d) G contains exactly one element of order 2.
(e)  Every subgroup of G is normal in G.

(f) G possesses an automorphism of order 3.

Hou(I) :={a € AutG| af = pa for all g€ I}.
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1.4 Cyclic Groups

Every finite cyclic group is already completely described by 1.1.2. But since
there exists a “universal object” for the class of cyclic groups, namely the
additive group Z of the integers, we may look at cyclic groups from a slightly
more general point of view.

The group Z is an infinite cyclic group with identity 0 € Z and generating
element 1 € Z.

1.4.1 Let U be a subgroup of Z. Then
U={nz|z€Z}=nk
for some n € NU{0}. Moreover

nZ < m7Z <= m|n.

Proof. If U = 0 then U = 0Z; so we may assume that U # 0. Let k € U.
Then also —k € U, and the minimum

n:=mn{i€Z|0<iclU}
exists. As the reader will know, there exist integers z,r € Z such that
k=zn+r and r € {0,1,...,n—1}.

Then r = k—2zn € U and thus r = 0 by the minimality of n,so k = zn € U
and U = nZ.

The additional statement is clear. a
Let n € N. The factor group
Cn = Z/nZ 12
is a cyclic group of order n consisting of the cosets modulo n
nZ,l1+nZ,...,(n—1)+ nZ.

The integers 0,1,...,n — 1 form a transversal of nZ in Z.

12Tn future we will often use multiplicative notation for the group operation on C,,.
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Let G = (g) be any cyclic group—now written multiplicatively. The laws
of exponents show that

p:Z— G with 2z g*
is an epimorphism. By 1.4.1 there exists n > 0 such that
Ker ¢ = nZ.
If n =0, then G is isomorphic to Z; if n > 1, then G is isomorphic to C,
(Homomorphism Theorem 1.2.5 on page 13). We obtain:
1.4.2 A cyclic group of order n is isomorphic to C,,. O

Using ¢ and the second remark in 1.4.1 we also obtain:

1.4.3 Theorem. Let G = (g) be a cyclic group of ordern and Iy, ... I
€ N the divisors of n, and set

Uz’ = <gli>.
Then Uy, ..., Uy are the only subgroups G. Moreover

(a) If n=mn4l;, then U; is a subgroup of order n; (i=1,...,k).

(b) Let 0 # z € Z. If i € {1,...,k} such that I; = (z,n),!3 then
(9%) = Us.

Proof. The subgroups of G correspond (with respect to ¢) to the subgroups
of 7Z that contain nZ, and thus by 1.4.1 to the divisors of n. Hence U; =
(1Z2)%, ..., U = (IxgZ)¥ are the only subgroups of G.

(a) n; is the smallest of the integers m € N such that (¢')™ = 1. Hence
(a) follows from 1.1.2 on page 4.

(b) Since [;|z we get g% € U, i.e., (¢g°) < U;. Note that there exist integers
z1, 29 € Z such that l; = nz; + zzo. It follows that

g =g"gT = (¢)*
and thus also U; < (g%). O
As a consequence, in every finite cyclic group G there exists exractly one

subgroup of order m for every divisor m of |G|. Since automorphisms of G
map subgroups to subgroups of the same order we have:

13(2,n) is the greatest common divisor of z and n.
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1.4.4  Subgroups of cyclic groups are characteristic.'* a

It is evident that in the situation of 1.4.3
Ui < Uj < lj’ll

For cyclic p-groups this implies:

1.4.5 Let G = (g) be a nontrivial cyclic group of orderp™, p a prime.
Then X ,
L< (") < (" )<< (<G

are the only subgroups of G. In particular, G contains exactly one minimal
and one mazximal subgroup. O

Note that the converse of 1.4.5 is also true: A finite group that contains
exactly one maximal subgroup is cyclic of prime power order.'® In contrast
to this, a finite group with exactly one minimal subgroup is not necessarily
cyclic; compare with 2.1.7 on page 46 and 5.3.7 on page 114.

In an Abelian group G every subgroup is normal. If in addition G is simple,
then G is cyclic of prime order.

1.4.6  The cyclic groups of prime order are the only Abelian simple groups.
O

Exercises

Let G be a group.

1. Suppose that U < N <G and N is cyclic. Then U < G.

2. Let p,q be primes and G be cyclic of order pq. Then G contains more than
three subgroups if and only if p # q.

3. Let G be finite. Suppose that [{z € G| 2™ = 1}| <n for all n € N. Then
G is cyclic.

4. Let G be finite. Suppose that all maximal subgroups of G are conjugate.
Then G is cyclic.

ndeed, this is also true for Z since here z — —z is the only nontrivial automorphism.
15See Exercise 10 on p. 10.
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1.5 Commutators

For any two elements x,y of the group G we define

[z, y] =2y ey (=y Ty =ala¥). 1O

Since
ry = yx [,y

the element [x,y] is the commutator of x and y. One has
[z, y] ™t = [y, 2],
The subgroup generated by all commutators
([z,y] | 2,y G) = G

is the commutator subgroup of G.

1.5.1 Let ¢ be a homomorphism of G. Then
[z,y]” = [%, 7]

for all z,y € G, and so (G")? = (G¥)". In particular, G' is a characteristic
subgroup of G. O

Also the commutator subgroup G” of G’ 7 is characteristic in G (1.3.2).

1.5.2 Let N be a normal subgroup of G. Then
G/N is Abelian < G’ < N.

Accordingly, G’ is the smallest normal subgroup of G with Abelian factor
group.

Proof. For z,y € G

(zN)(yN) = (yN)(zN) <= zyN = yaN <= [z,y] € N. O

The group G is perfect if G = G’. In Section 6.5 we need:

lﬁyfcz: = (y

"That is, (G') =: G".

71)1:
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1.5.3 Let N be an Abelian normal subgroup of G. If G/N is perfect,
then also G’ is perfect.

Proof. From 1.5.1, applied to the natural epimorphism, we obtain
G/N = (G/N) = G'N/N

and thus G = G'N. Since also G'/N NG’ (2 G/N) is perfect, the same
argument gives G' = G"(N N G'). Tt follows that G = G"N and G/G" =
N/NNG". Now 1.5.2 implies G’ = G” since N is Abelian. O

For z,y,z € G we define

[z,y, 2] = [lx,y], 2],
and for subsets X,Y,Z C G

(X, Y] = ([, yl [z e X, yeY),
X,Y,Z] = [X,Y],Z].

The following elementary properties are often expressed using commutators.

e For subsets X,Y of G:

(X,)Y] =1 < zy =yzr forallze X,yecY.
e For subgroups X,Y of G:
[X,Y] <Y <= Y is X-invariant.
Thus, for normal subgroups N and M of G we have:
e [N,M] < NN M.

We shall frequently use the following commutator relations, which can be
verified easily.

1.5.4 For x,y,z € G:

[z,yz] = [2,2] [2,y]" and  [zz,y] = [z,9]" [2,y]. 0
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1.5.5  For subgroups X and Y of G the subgroup [X,Y]| is normal in
(X,Y).

Proof. For z,z € X and y € Y 1.5.4 implies
[,y = [w2,9][z,9] 7" € [X,Y];

and with a similar argument [z,y]* € [X,Y] for z € Y. O

The next slightly more complicated relation can also be verified easily:

1 1 z

[:'673/_ ’Z]y [y7z_ 7x] ['27:'U_17:q]m = 1 (aj’y?’z 6 G)'lg

We will use this relation in the following form:

1.5.6 Three-Subgroups Lemma. Let X,Y,Z be subgroups of G. Sup-
pose that [X,Y,Z] =Y, Z,X]| =1. Then also [Z,X,Y]=1. O

Exercises

Let G be a group, = € G, and set Cg(z) := {y € G| yr = zy}. Obviously, Cg(x)
is a subgroup of G.

1. Let A be an Abelian normal subgroup of G and x € G.

(a)  The mapping A — A given by a + [a,z] is a homomorphism.
(b)  [A ()] = {[a,2]| a € A}.
2. Let A and z be as in 1. Suppose that G = ACg(ax) for all a € A. Then
[4,G] = [A, {2)].
3. Let |G| =p", p aprime, and let |G : Cg(x)| <p for all xz € G.
(a) Cg(z) <G forall z € G.

(b) G <Z(G).
(¢)  (Knoche, [74]) |G| < p.

4.  Let o € AutG. Suppose that z712% € Z(G) for all x € G. Then 2% = x
for all z € G'.

8See [100] and [64].
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5. (Ito, [70]) Let G = AB, where A and B are Abelian subgroups of G. Then

G’ is Abelian.

6. (Burnside, [4], p. 90) Let A be a normal subgroup of G. Suppose that every
element in G\ A has order 3. Then [B,B?] =1 for all Abelian subgroups

B<A and z€ G\ A.

1.6 Products of Groups

Products of groups are of twofold interest. On the one hand, they can be
used to construct new groups from given ones (external products); on the
other hand, they can be used to describe the structure of groups (internal
products). One internal product we have already met: the complex product
of two subgroups A and B. Indeed, AB is also a group if AB = BA (1.1.5

on page 6).

Let Gq,...,G, be groups. The Cartesian product of the sets G;

n

XGZ = Glx---xGn = {(gl,...,gn)|gi€G¢}
i=1

is a group with respect to componentwise multiplication

(g1 -5 gn)(his s hn) = (g1ha, ..o gnha).

This group is the (external) direct product of the groups Gj,...

Obviously, for j =1,...,n the embedding

€j2Gj—> >< G; with g — (1,...,1,g,1,...,1)
i=1,...,n 7

is an isomorphism from G; to

G;* = {(91,.--.9n) | g =1 for i # j}.

For the subgroups G1*,...,G,* of G:= X @G; one has:

1=1,...,n

Dy G=Gi"--Gy,

Dy G*<G, i=1,...,n,

,Gn.
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D5 Gi*ﬂHGj*Il,iZL...,n.
J#i

Conversely:

1.6.1 Let G be a group with subgroups G:1%,...,G," such that Dy, Do

and D3 hold. Then the mapping

n
a: X G* =G with (g1,---,90) — 91" In
i=1

1s an isomorphism.

Proof. Dy shows that « is surjective. Dy gives

Gi*,G] < G 0[] G for i #k,

J#i
and thus [G;*,G;*] = 1 because of D3. For h;, g, € G;*, i =1,..
implies
(g1 gn)(h1---hn) = (g1h1) - (gnhn);
hence « is a homomorphism. Let (g1,...,9,) € Ker «, i.e., g1---
Then

gi=1Ilg;' €GN IIG =1,
J# J#i

again by D3, so Ker a« = 1. Thus, « is a isomorphism.

.,n, this
gn =1
O

If D1, Dy and D3 hold for the group G and subgroups G7,..., G}, then G is

called the (internal) direct product of the subgroups G1*,...
notation is justified by 1.6.1); in this case we write as above

G =G x---xG, = X G~
i=1

, G (this

In particular, we have [G;*,G;*] =1 for i # j, and every element g € G

can be written in a unique way as a product

g = Ilg: with g;e€G;"
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We have met two versions of the direct product, the external and internal.
The first is a product of (not necessarily distinct) groups, the other a product
of (distinct) subgroups. Very often the factors Gi,...,G,, of the external
direct product will be pairwise distinct. In these cases one usually identifies
G; with G;* according to the embedding €; and no longer distinguishes
between the external and internal direct products.

1.6.2 Let G=G1 X ---x Gy

Z(G) = Z(Gy) x -+ x Z(Gy).
G =G| x---xGqGy,.

Let N be a normal subgroup of G and N; = NNG; (i =1,...

Suppose that N = Ny X --- X N,. Then the mapping
a: G=G; X+ xGp > G /Ny x -+ x Gp/Ny,

given by
9="(91,---,9n) = (91N1, - -, gn Nn)

1s an eptmorphism, with Ker o = N. In particular

G/N 2 Gi/Ni X -+ x Gn/Ny.

If the factors G1,...,Gy are characteristic subgroups of G, then

AutG = AutGy x --- x AutG,,.

Proof. (a) Componentwise multiplication in G gives (a).

(b) An easy induction using 1.5.4 gives (b). For example, for n = 2

G/ = [GlGQ, Gle] = H[G17 Gj] = Gll XG’2

0,J

(c) Apply 1.2.4 and 1.2.5.

(d) If a; is an automorphism of G; (for ¢ =1,...,n), then

(g1, --590) = (g1 90™)
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defines an automorphism of G = Gy x --- x G, , and
p: AutG) x - x Awt G, > Aut G with  (aq1,...,0) — «

is a monomorphism. Moreover, ¢ is surjective if the factors G,..., G, are
characteristic subgroups of G. O

1.6.3 Let G=Gy x---x Gy, and N be a normal subgroup of G.

(a) If N is perfect, then N = (NNGp) x---x (NNGy).

(b) If Gy,...,G, are non-Abelian simple groups, then there exists a subset
J CA{1,...,n} such that

N = XGj and GxNN =1 fork ¢ J.
JjeJ

Proof. (a) Since G; and N are normal in G we get [N,G;] < N NG;, and
then 1.5.4 yields

[N.G] = [I[N,Gi] < TI(NNG;) = No.

In particular [N, N] < Ny, and N' = N gives N = N.

(b) The simplicity of the normal subgroups G; yields G; < N or G;NN =1,
so (b) follows from (a) if N is perfect. Thus, it suffices to prove by induction
on |G| that N is perfect.

According to 1.6.2 (b) we may assume that G # N. Hence, there exists

ke {l,...,n} such that Gy £ N,so NNG; =1 and thus NGy = N x G.

Let G = G/Gy. By1.6.2 (c) G = X G, and induction shows that N = N
ik

Now 1.5.1 on page 24 yields N x Gy = N’ x G, so |[N| = |N’| and N = N'.

O

For Abelian simple groups Gj,...,G, the statement in 1.6.3 (b) is wrong.
For example, Cy x Co contains three minimal (normal) subgroups.

The following result, which is a consequence of the Homomorphism Theorem
1.2.5, shows that the external direct product can be used to get results about
the internal structure of a group.
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1.6.4 Let Ny,...,N, be normal subgroups of G. Then the mapping
a: G— G/Ny x---xG/Ny,
given by
g = (gN17' .. 7gNn)
is a homomorphism with Ker o = [\ N;. In particular, G/(\N; is isomor-

phic to a subgroup of G/Ni X -+ X G/N,. O
Frequently one has the following situation:

1.6.5 Let G be a product of the normal subgroups G1,...,G,. Suppose
that

(G, IGs1) = 1 for i#j e {1,2,...,n}.
Then G =Gy x -+ x Gy,

Proof. We have to show that

D = (Jgic:j) NG = 1.

By Lagrange’s theorem |D| is a divisor of |G;| and of
k= [[16)
i

Repeated application of 1.1.6 shows that k and thus also |D] is a divisor of
II|G;|. Hence, k and |G;| are coprime, and |D| = 1. O
J#i

This implies the fundamental observation:

1.6.6 Let a,b be elements of the finite group G such that ab = ba and
(o(a),o(b)) = 1. Then

(ab) = (a) x (b)
and o(ab) = o(a)o(b).
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Proof. Letk := o(a) and m := o(b). Note that (a,b) is an Abelian group,
where the subgroups (a) and (b) are of coprime order. Hence

H = (a,b) = (a) x (b)
is a group of order mk. Let g :=ab (€ H). The homomorphism

p: {(g) = H/(a) with g~ (a)g' = (a)'

is surjective. Hence, |Im ¢| = m is a divisor of [(g)| (Homomorphism
Theorem). In the same way k is a divisor of [(g)|. Now (m, k) =1 implies
o(g) =mk = [H|, i.e., H = (g). x

Let G be a product of the subgroups Gy, ..., Gy, which satisty
Z Gi, Gj] =1 fori#jin{l,...,n}.

Then G is the central product of the subgroups Gi,...,G,. Because of
Z the subgroups G; are normal in G; moreover we have for i =1,...,n

GiZ(G)n [][G;2(G) = Z(G).
J#i

With the Homomorphism Theorem we obtain

1.6.7  Let G be the central product of Gi,...,Gn and G = G/Z(@G).

Then G is a direct product of the groups G1,...,Gy, with

G~ Gi/Z(Gy), i=1,...,n.
O

We will now introduce the semidirect product. In contrast to our treatment
of the direct product we first give the internal version.

Let G be group with subgroups X and H. Then G is called the (internal)
semidirect product of X with H, if

SDy, G=XH,

SDy, H 4G,
SD;s XNH-=1.
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Hence, in the semidirect product G = X H, the subgroup X is a complement
of the normal subgroup H. If X is also normal in G , then G is the direct
product X x H.

1.6.8 Let X and H be subgroups of G, which satisfy SD1, SDs, and SDs.

(@) FEvery g € G is in a unique way a product g = xh with * € X and
heH.

(b) For x1,20 € X and hy,ho € H

(1'1 hl)(ZCQ hg) = (.I'l CL‘Q)ULTQ hg).

Proof. Part (a) follows from 1.1.9 since X is a transversal of H in G. Part
(b) is obvious. O

Now let X and H be groups, and let ¢: X — Aut H be a homomorphism.
Then X acts on H (with respect to ). As in Section 1.3 we set

h* .= h* (re X, heH)

and thus
(h*)Y = n* (he H, z,yeX).

The multiplication (compare with 1.6.8 (b))
(x1,h1)(z2, h2) = (z122,h]%h2) (2; € X, h; € H),
turns the Cartesian product
G :={(z,h)|ze X, he H}
into a group: The identity of G is (1x, 1), and the inverse of (x,h) is
(71 (7).
Associativity is verified as follows:

((x1, M) (w2, h2)) (23, h3) = (w122, h{*h) (23, h3) = (T12273, (RT*h2)"h3)
= (azlxgzcg,hf2x3h§3h3) = (xlahl)(x2x3ah33h3)

= (21, h1) ((w2, ha)(xs, h3)).
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This group G is called the (external) semidirect product of X with H
(with respect to ¢); we write G = Xx,H or more simply G = X x H,
or even G = X H, if there is no danger of confusion about which action is
meant.

If ¢ is the trivial homomorphism; i.e., X acts trivially on H, then X x H
is the direct product X x H.

As for the direct product, the embeddings

ex: X > X x H with z~ (z,1)

eg: H— X x H with h— (1,h)
are monomorphisms, and X x H is the semidirect product of the subgroup
X¢X with the subgroup H¢#. Usually one identifies X and X¢X (resp. H

and HH) via ex (resp. €g7). Then the action of X on H is conjugation in
X x H.

Elements of order 2 are involutions, and a group generated by two involu-
tions is a dihedral group. The following result shows that dihedral groups
are semidirect products.

1.6.9 Let G be a finite group of order 2n. The following statements are
equivalent:

(i) G is a dihedral group.

(i) G is the semidirect product X x H of two cyclic subgroups X = (x)
and H = (h) such that

(D) o(z) =2, o(h) =n, and h* = h™ L.

Proof. (i) = (ii): Let x,y be involutions of G such that G = (z,y), and let
X = (z), h:=zy and H := (h).
One has
h® = zaxyr = yr = h™! = yxyy = WY,

and so H is normal in G and G = XH. If X N H # 1, then x and thus
also y is in H. Then x = y since H is cyclic. Now h =zy =1, and H = 1.
But this contradicts = € H.
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(ii) = (i): The element y := xh is an involution since
y? = (zhx)h = h'h = 1.

Hence G = (z,y) is a dihedral group. O

If G is as in 1.6.9 (ii), then the group table of G is uniquely determined by
the relations in (D). Hence, there is only one dihedral group of order 2n (up
to isomorphism). Such a group is denoted by Ds,. Clearly Dy = Cy and
D4 = CQ X 02.

D>, is the symmetry group of a regular n-gon. The reader is asked to verify
this for n =3 and n = 4.

It should be mentioned that in section 4.4 we will introduce a third type
of product, the wreath product, which will be constructed by means of
direct and semidirect products.

Exercises

Let A, B, and G be groups.

1. (a) Every normal subgroup of A is a normal subgroup of A x B.
(b) U < AxB doesnotimply U= (ANU) x (BNU).

(¢) If Aand B are finite and (|A|, |B|) = 1, then A and B are characteristic
subgroups of A x B.

(d) Aut(A x B) contains a subgroup isomorphic to Aut A x Aut B.

2. Let G= Ax B. Then A2 B, if and only if there exists a subgroup D in G
such that G=AD =BD and 1=AND=BnND.

3. Let G be finite. Suppose that every maximal subgroup of G is simple and
normal in G. Then G is an Abelian group and |G| € {1,p, p?, pq}, where
p,q are primes.

4. A group X is semisimple if X is a direct product of non-Abelian simple
groups. Let G be a group and M, N normal subgroups of G. If G/M and
G/N are semisimple, then also G/(M N N) is semisimple.

5. Show that the non-Abelian group of order 6 on page 3 is the group Dg.
6. Let n> 2. Then

Z(Dyp) #1 <= n=0 (mod 2).
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7. Let G and G2 be finite perfect groups such that G1/Z(G1) = G2/Z(G3).
Then there exists a finite perfect group G and subgroups Zi, 7> < Z(QG)
with

In the following G is a dihedral group and 4 < |G| < oc.

8. Describe all subgroups of G.

0. () 1Z(@) <2

(b)  (a) Z(G)={g € G| g* = g} for every involution a € G \ Z(G).
() |G:G[=2|Z(G)l.

(d)

For every involution a € G\ Z(G) there exists an involution b such

that G = (a, b).

10.  Let Z(G) # 1 and a be an involution of G'\ Z(G). The elements in aZ(G)
are conjugate in G, if and only if 8 is a divisor of |G|.

11.  The following statements are equivalent:

(a)  All involutions are conjugate in G.
(b) Z(G)=1.
(¢)  There exists an involution a € G such that |Cg(a)| = 2.
(d) 411Gl
)

G contains a maximal subgroup of odd order.

—
@

1.7 Minimal Normal Subgroups

Let G be a group. A normal subgroup N # 1 of GG is a minimal normal
subgroup of G if 1 and N are the only normal subgroups of G that are
contained in N. It is evident that every nontrivial finite group possesses
minimal normal subgroups. Moreover, any nontrivial finite group is either
simple or contains a proper minimal normal subgroup. In many proofs by
induction on the group order, minimal normal subgroups play an important
role.

In this section we collect some elementary properties of minimal normal
subgroups. More information about the embedding of minimal normal sub-
groups can be found in Sections 6.5 and 6.6.

1.7.1 Let N be a minimal normal subgroup of G.
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(a)  For all normal subgroups M of G either N < M or NNM =1. In
the second case [N, M| = 1.

(b) If N is Abelian, then N < H or NN H =1 for all subgroups H of
G with G = NH.

(¢) If ¢ is an epimorphism from G to a group H, then N¥ =1 or N¥
1s a minimal normal subgroup of H.

Proof. (a) follows directly from the minimality of N, noting that

[IN,M] < M NN < G.

(b) Here M := H N N is normal in H but also normal in N since N is
Abelian. Now since G = HN it follows that M < G and thus M € {1, N}.

(c) Let A # 1 be a normal subgroup of H that is contained in N¥. Then
A" NN is a normal subgroup of G, and A? AN # 1 since A # 1.
Hence A NN = N and N¥ = A. O

1.7.2 Let M be a finite set of minimal normal subgroups of G, and let

M= T[] N.
NeM

(a) Let U be a normal subgroup of G. Then there exist Ny,..., N, € M
such that
UM = U x Ny x --- x N,,.

(b)  There exist Ny,..., N, € M such that

M = Ny x --- X N,,.

Proof. (a) By 1.7.1 (a) UNN =1 for every N € M with N £ U and
thus UN = U x N. Let {Ny,...,N,} be a subset of M that is maximal
with respect to the following property:

U(HNZ-) — U x Ni x - x N, = X.
=1
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Assume that X # UM . Then there exists N € M such that N £ X. By
1.7.1 (a)
XN =X X N=Ux Ny x -+ x N, xN,

which contradicts the maximal choice of {Ny,...,N,}. Hence X = UM.
Now (b) follows from (a), with U = 1. O

1.7.3  Let N be a minimal normal subgroup of G and E a minimal normal
subgroup of N, and assume that the set M = {E9| g € G} is finite. Then
E is simple, and there exist Eq,...,E, in M such that

N = Fy x---x E,.

Proof. The subgroup [[ EY is normal in G and thus equal to N. Hence
geG
N = FE; x --- x E, follows from 1.7.2 (a). Every normal subgroup of Fj

also is a normal subgroup of N. This shows that F; is simple, and then F
is simple as E = Fj. 0O

If £ in 1.7.3 is Abelian and thus isomorphic to C), (p € P), one gets:

1.7.4 Let N be an Abelian minimal normal subgroup of the finite group
G. Then there exists p € P such that N is a direct product of subgroups that
are isomorphic to C,,. O

In the situation of 1.7.4 one knows the structure of the factors E;. On the
other hand, in general there are many different choices for these factors in
N; compare with the remark after 1.6.3.

If the minimal normal subgroup N is not Abelian, then one has the opposite
situation. Elementary methods do not yield any further properties of the
structure of the factors E;, but according to 1.6.3 (b) these factors are
uniquely determined.

Together with 1.6.3 (b) we obtain:

1.7.5 Let N be a non-Abelian minimal normal subgroup of the finite group
G, and let IC be the set of minimal normal subgroups of N.
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(a)  The elements of K are non-Abelian simple groups, which are conjugate

in G.
(b)  For every M QN there exist k(M) C K such that

M= X E and KM)={EcK|FE < M}.
Eek(M)

(¢ N= X FE. O
EeK

Exercises

Let G be a finite group and L a maximal subgroup of G.

1. All minimal normal subgroups N of G that satisfy NNL = 1 are isomorphic.

2. Let L be non-Abelian and simple. Then there exist at most two minimal
normal subgroups in G.

3. Let L and G be as in 2. Give an example where GG possesses two minimal
normal subgroups.

4.  Suppose that G contains two minimal normal subgroups, neither of which is
contained in L. Then every minimal normal subgroup of L is contained in
the product of all minimal normal subgroups of G.

5. Let (%) be the property:
(¥)  Every minimal normal subgroup is contained in the center.

(a) Let N and M be normal subgroups of G, which satisfy (x). Then also
N M satisfies ().

(b)  If G satisfies (x), then also every normal subgroup of G satisfies (x).

1.8 Composition Series

In this section let G be a nontrivial finite group. By (A4;)i=o0,....« We denote
a subgroup series

=A< A1 < <A 1<A < <A 1<A =G

of length a of G. A series (A;)i=01,..« is a normal series, if 4, < G,
and a subnormal series, if A; 1 < A; forall it =1,...,a.
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A normal series (A;)i=o,..q is a chief series, if each A;_; is maximal
among the normal subgroups of GG that are properly contained in A;.

A subnormal series (A;)i=o,..o 1S a composition series, if each A;_; is
maximal among the proper normal subgroups of A;.

The composition factors A;/A;_; of a composition series are simple
groups. A composition series can be found by going downward—starting
with G—and choosing A;_; as a maximal normal subgroup of A;. Simi-
larly one can refine a normal series (resp. subnormal series) to obtain a chief
series (resp. composition series).

Let (Aji)i=o0....« be a composition series for G. If all composition factors
are Abelian'” and thus cyclic of prime order (1.4.6 on page 23), then the
structure of this composition series is determined by the order of G: The
prime factor decomposition

G| = pi o

corresponds to

G = 1T 14i/Ai],

where a = e;+---+e,, and e; is the number of factors A;/A;_; that are
isomorphic to Cp,.

The set of composition factors, for a given composition series of a finite
group, forms an invariant of the group. This is the Jordan-H6lder Theorem.
We will prove a version of this theorem that also gives nontrivial information
in the above-mentioned special case, in particular for the case of Abelian
groups. To do this, we use the notation introduced at the end of Section
1.3.

Let X be a group that acts on G, and let A and B be X-invariant subgroups
of G such that B < A. Then X also acts on A/B; we call A/B an X-
section of G.

A subnormal series (A4;)i—o,.. is an X-composition series of G if all
of the subgroups A; are X-invariant and there are no X-invariant normal
subgroups of A; strictly between A;_; and A;. Then the factors A;/A;_4
(i=1,...,a) are X-simple.

An X-composition series of G is a composition series if X = 1, and a chief
series if X = G.

19Such a group is said to be solvable; see 6.1 on p. 121.
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1.8.1 Jordan-Holder Theorem.? Let X be a group that acts on G,
and let (A;)i=o,...a and (B;)i=o,..p be two X-composition series of G. Then
a =b and there exists a permutation w on the set {A;/A;—1|i=1,...,a}
such that

(Ai/A;1)" =x B;/B;_.

Proof. Let N := Bp_1. Then N is a maximal X-invariant normal subgroup
of G, and G/N is X-simple. Hence, we may assume that N # 1 since in
the other case the conclusion is obvious.

For i € {1,...,a} and A; £ N, we get
N aAN QAN -~ QAN DG

and thus G = N A; because of the maximality of N. Hence

for 1 =0,...,a.
We set
A;k = A; NN

and choose j € {0,...,a} maximal such that A; < N. Then
Aj DA < Ajn

and thus A; = A7, since Aj11 £ N and Aji1/A; is X-simple. Hence,
we have

(2) Aj = AT = A%, and

(3) Aj1/A; =x G/N,
the last statement because of
(1) 1.2.6 N
G/N = AjN/N =x Aju./Aj,.
It follows for k£ > 7 + 2 that

Az NA,_1 = A, N NN Ak:—l = A;::—lv

20Compare with [15], p. 42, and [68].
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and by 1.2.6
A;;/Az_l =y AzAk—l/Ak:—l < Ak/Ak—l-

Now the X-simplicity of Ag/Ai_1 implies either

(4) ApJAr 1 =x Ap/Ar—1, k>j+2,
or

In the second case NAp = G = N Ap_1 yields

Ap/Af =x G/N =x Ay /A5,

and the contradiction Ay = Ap_q.

Hence
=A< <Al <Al 5, <---< A, =N

and
1l=By<:---< By.1 =N

are two X-composition series of N. By induction on |G| we may assume
that for these X-composition series there exists a permutation m with the
desired property. In particular a — 1 =b — 1 and thus a = b.

We now extend 7 to a permutation on {A4;/A;_1|i=1,...,a} by setting
(Ajt1/ A;)" = By/By-1.

Then (3) and (4) imply the assertion. O



Chapter 2

Abelian Groups

In this chapter we determine the structure of the finite Abelian groups. As a
starting point we use the structure of the cyclic groups described in Section
1.4. Tt will turn out that every finite Abelian group is the direct product of
cyclic groups. In the second section of this chapter we will show that the
automorphism groups of cyclic groups are examples of Abelian groups.

Compared with groups in general the structure of Abelian groups is much
easier to investigate since commutativity implies many structural properties
that almost never hold in non-Abelian groups. For example, in an Abelian
group every subgroup is normal and the product of subgroups is again a
subgroup (1.1.5 on page 6).

From this chapter on all groups considered are finite.

2.1 The Structure of Abelian Groups

If G = (x) is a cyclic group, then |G| = o(z), and Lagrange’s theorem
implies
o(y) divides o(z) for all y € G.

A more general property is true for Abelian groups, as one can show using
1.6.6 on page 31:

2.1.1  Let G be an Abelian group and U a cyclic subgroup of mazximal
order in GG. Then

o(y) divides |U| for all y € G.

43
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Proof. Let y € G. We show that every prime power p” that divides o(y)
also divides |U|. Let |U| = p®m with (p,m) = 1. By 1.4.3 on page 22 there
exist elements a € (y) and b € U such that

o(a) = p" and o(b) = m,

and 1.6.6 on page 31 implies o(ab) = p"m. Now the maximality of |U| gives
p" | ptm. O

2.1.2 Let G and U be as in 2.1.1. Then there exists a complement V of
U in G; in particular G =U xV and |G| = |U||V].

Proof. If G = U, then V = 1 is the desired complement. Let G # U.
Among all elements in G\ U we choose y such that o(y) is minimal. Then
y# 1 and (yP) < (y) for every prime divisor p of o(y) (1.4.3 on page 22),
ie., (yP) <U.

Let U = (u). By 2.1.1 and 1.4.3 on page 22 o(y) is a divisor of |U|, and U
contains exactly one subgroup for every such divisor. Hence, there exists a
subgroup of order % in (uP), namely (yP). Let i € N such that uP® = yP.
Then (yu=)? = 1, but yu=* € U since y € U. The minimality of o(y)
gives

o(y) = p.

Thus, N := (y) is a nontrivial subgroup of G such that
UNN = 1.
Let G :=G/N.! For () < G we obtain
o() = [{)] = min{n e N[ 2" € N} < [(z)| = o(),

and since
UN/N 2U/UNN = U

we also have |U| = |U|. Hence, U is a cyclic subgroup of maximal order in
G. By induction on |G| we may assume that there exists a complement V'
of U in G.

'For the “bar” convention, see p. 14.
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Let N <V < @G such that V = V/N. Then V is a complement of U in G
since UNV <UNN =1. O

The complement V' in 2.1.2 can again by decomposed into a cyclic subgroup
of maximal order and its complement. Hence, a repeated application of 2.1.2
gives:

2.1.3 Theorem. Fvery Abelian group is the direct product of cyclic
groups. 0

Thus, for every Abelian group G:
G2Cpy X--xCp and |G| =ny- - -n,.2

If m is a divisor of |G|, then there exist divisors m; of n; (i =1,...,r) such
that m = my---m,. Hence C,, X --- x C,, is isomorphic to a subgroup
of order m of GG. This implies:

2.1.4  Let G be an Abelian group and m a divisor of |G|. Then G contains
a subgroup of order m. a

Let p be a prime. We set

Gp = {z € G| z is a p-element}.

2.1.5 Let G be an Abelian group. Then G\ is a characteristic p-subgroup
of order |G|,.?

Proof. For x,y € G, also zy is a p-element; use zy = yx and 1.1.2 on
page 4. Thus G, is a subgroup. Since automorphisms map p-elements to
p-elements this subgroup is characteristic.

By 2.1.4 G contains a subgroup P of order |G|,. Hence, P is a p-group,
and thus every element of P is a p-element; in particular P < G,

If P # G)p, then
k:=|Gp: Pl #1

and (k,p) =1 (Lagrange’s theorem). But now 2.1.4 gives a subgroup K of
order k£ in G, which contradicts 1.1.8 on page 8 since every element of K
is a p-element. O

2C,, is the cyclic group of order n;; see 1.4.
3For n € N let n, be the largest p-power dividing n.
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2.1.6 Theorem. Let G be an Abelian group. Then

G= X G,
pen(G)

Proof. By 1.6.5 on page 31 the product G; of the subgroups G, p € 7(G),
is a direct product; and 2.1.5 yields

Gil = 11 1Gpl = 11 [Gl, =G|,
pem(Q) pem(G)

so G1 =G. O
In an Abelian group the product of two cyclic groups of coprime order is

again cyclic (1.6.6 on page 31). Hence, the question whether an Abelian
group is cyclic or not can already be decided in the subgroups G, p € 7(G).

2.1.7  For an Abelian group G the following statements are equivalent:

(i) G is cyclic.
(i)  For all p € m(G) there exists exactly one subgroup of order p in G.

(iii) G, s cyclic for all p € ©(G).

Proof. (i) = (ii) follows from 1.4.3 on page 22 and (ii) = (iii) from 2.1.3,
both applied to G,,. Finally a repeated application of 1.6.6 on page 31 gives
the implication (iii) = (i). O

Of course, in 2.1.3 more can be said about the factors of the decomposition.
Because of the unique decomposition 2.1.6 it suffices to investigate Abelian

p-groups.
An Abelian p-group is elementary Abelian if 2P =1 for all = € G.

2.1.8 Let G be an elementary Abelian p-group of order p™ > 1.

(a) G is the direct product of n cyclic groups of order p.
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(b) If G is written additively, the scalar multiplication
kx =2+ -+
—_——
k-times

for k:=k+pZ € Z/pZ and x € G, makes G into an n-dimensional
vector space V' over the prime field Z/pZ. The subgroups of G cor-
respond to the subspaces of V' and the automorphisms of G to the
automorphisms of V.

Proof. (a) Since every nontrivial cyclic subgroup of G has order p, G is the
direct product of such subgroups (2.1.3), and since |G| = p", n factors are
required.

(b) There is nothing to prove. Clearly, the existence of a basis of V' with n
elements is equivalent to (a). O
In a (not necessarily Abelian) p-group G, the group
0%(G) = (zeG|a” =1), i=0,1,2,...
is a characteristic subgroup. Evidently
Q,.1(G) < Qu(G), i=1,2,...
We set

If G is Abelian, then
0(G) = {zeG|a” =1}

and
G elementary Abelian <= G = Q(G).

2.1.9 Let G be an Abelian p-group such that
(%) G =A x---x A,
is the direct product of n cyclic groups A; # 1. Then
G| = p".
More precisely: If n; € N for i =1,2,... is defined by
194:,(G)/Qi-1(G)| = p™,

then m; —n;y1 15 the number of the factors of order p* in (x).
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Proof. From

follows |Q2(G)| = p™ = p™. Since

0(C)/AC) = AG/AC) = 2(X(A/AA)) =X UA/UA)

= X O(A)/AA).

no is the number of factors in () of order at least p?. Thus, ny — ngy is the
number of factors of order p. In the same way one calculates n; — n;; for
1> 2. O

The minimal number of generators of a group G is the rank r(G) of G. If
G is an Abelian p-group, then r(G) = n, where n is as in 2.1.9.

The results 2.1.3, 2.1.6, and 2.1.9 allow a complete survey over all finite
Abelian groups: Such a group is a direct product of cyclic groups of prime
power order, and the isomorphism type is determined by the number and
the order of these factors. For example, there are exactly 9 Abelian groups
of order 1000 = 23 - 53, namely

02><02><02><C5><C5><C5
CQXCQXCQXC5XC52
CQXCQXCQXC53

Cy x Cy2 x C5 x C5 x Cf

Co x Cy2 x C5 x Cs2

Ca X Cy2 X Cgs

Cos X (5 x C5 x Cj

Coys X (5 X Cs2

023><C53

Only the last of these groups is cyclic.

It should be mentioned that finitely generated Abelian groups have a struc-
ture similar to that of finite Abelian groups. They are direct products of
finite Abelian groups and groups isomorphic to Z (e.g., see [19], p. 82).

Exercises

Let G be a finite Abelian group.
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1. Let e € N be minimal such that a® =1 for all a € G (expG := e is the
exponent of (). There exists an element b € G such that o(b) = e.

2. Let expG =e. Then G is cyclic, if and only if |G| = e.

3. Let p be aprime, C = Cps xCps, B=C,xCp,xCp,and G =C x B. Then
no subgroup of G has a complement isomorphic to C)p2 in G.

4.  Every Abelian group of order 546 is cyclic.
5. Give an example of a non-Abelian group that satisfies the statement of 2.1.4.

6. Determine [] g.
geG

7. For every subgroup U < G there exists an endomorphism ¢ of G such that
Imp="U.

8. If Aut G is Abelian, then G is cyclic.
9.  With the help of 6 show:

(p—1)! = —1modp (pprime).?
10. Let a,p € N, p a prime and (a,p) = 1. Then

a?~! = 1 mod p.b

2.2 Automorphisms of Cyclic Groups

As examples of Abelian groups we determine in this section the automor-
phism groups of cyclic groups.

For an Abelian group G and every k € Z the mapping
ap: G — G such that =z — zF
is an endomorphism with
Kerap, = {z € G| zF =1},

Thus, Ker «;. contains all elements of GG, whose orders divide k.

2.2.1 «ap is an automorphism of the Abelian group G, if and only if
(k,]1G]) = 1.

4Wilson’s Theorem.
SFermat’s Little Theorem.
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Proof. If (k,|G|) = 1, then Ker o = 1 because of 1.1.8 on page 8. Con-
versely, if (k,|G|) # 1, then there exists a common prime divisor p of k
and |G|. Now by 2.1.6 the p-subgroup G, is nontrivial, and there exists a
subgroup of order p in G. This subgroup is contained in Ker oy . O

Together with 1.4.3 on page 22 this gives for cyclic groups:

2.2.2  The automorphisms of a cyclic group of order n are of the form

ap with k€ {1,...,n—1} and (k,n) = 1. O
From apop = opp = ap.p = ooy for k, k' € 7 we obtain:
2.2.3  The automorphism group of a cyclic group is Abelian.b O
Because of the decomposition G = X G in 2.1.6 one has

pem(G)

AutG =2 X AwtG,
pen(G)

(1.6.2 on page 29). Hence, it suffices to determine the automorphism group
of cyclic p-groups.

If G is a cyclic p-group of order p® > 1, then |AutG| is the number of
integers k such that 1 < k < p® and (k,p) = 1. Thus

[ Aut G| = p*'(p—1).
In particular | Aut G| =p —1 if |G| = p. In this case:
2.2.4  The automorphism group of a group of order p is cyclic.”

Proof8. Let G be a (cyclic) group of prime order p. Then for g € G and
a € AutG

(1) g =g <<= g=1or a=1

50One can easily extend 2.2.2 and 2.2.3 to: The endomorphism ring of a cyclic group
C), is isomorphic to the ring Z/nZ.

"This also follows from the well-known result that the multiplicative group of a finite
field is cyclic.

8The argument in this proof will be used again in 8.3.1 on p. 191 in a more general
context.
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We assume that Aut G is noncyclic and show that this leads to a contradic-
tion. By 2.1.7 there exists r € m(Aut G) and a subgroup A < AutG such
that

A= (. xC,h.

Let B be the set of all subgroups of order r of A. Then
(2) Bl =r+1 and B; N By =1 for By # By in B.

For 14 B < A and g € G7 let

Then

(98)* = I ¢°* = gs,
BEB

for a € B# and thus gp = 1 because of (1). Now (2) gives
l=ga=9"1lgp=9",

and o(g) = r. This implies p =r (1.1.8). On the other hand by 2.2.2
r divides |AutG| = p — 1,

a contradiction. O

2.2.5 Let G be a cyclic p-group of order p® > 1 and A := AutG. Then

A=8xT,

1

where S is a group of order p*~* and T is a cyclic group of order p — 1.

Proof. As we have already seen |A| = p°~!(p — 1). Moreover, A is Abelian
(2.2.3). The direct decomposition 2.1.6 gives

A=8xT with |S| =p*! and |T| = p—1.

Let H be the (characteristic) subgroup of order p in G (1.4.3 on page 22)
and
p: A— AutH with a— @ := alg.
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Then ¢ is an epimorphism since
AuwtH = {a;p| 1<k <p-1}.

Moreover, since |Aut H| = p—1 and (|S]|,p—1) =1 we get that S < Ker ¢
(1.1.8 on page 8). In fact S = Ker ¢ since |A| = |Im ¢||Ker ¢|. Now the
Homomorphism Theorem gives

T =2 A/Ker ¢ = Aut H,

and T'is cyclic by 2.2.4. O

2.2.6 Let G=(x), e>2, and A and S be as in 2.2.5.

(a) Thecase p#2 or p=2=ce:
S = (a) with z% = z'TP.

In particular (ozpe”) s the unique subgroup of order p in A, and for
e—2
6= aP :

e—1

28 = P
(b) The case p=2<e:
S=A={)x{) with 27 =zt 2% =ab

In particular v, & := (52873, and n =& are the only automorphisms
of order 2, and

m1+26_1 26—1_1

¢ = and z" = x

Proof. (a) Since (p,1 4 p) = 1 the mapping « is an automorphism of G
(2.2.1). If p =2 = ¢, then 2% = 2P = 23 = 27! is the only nontrivial
automorphism of G. Hence, in the following we may assume that p # 2.
The order of « is the smallest integer m € N such that

(I1+p)™=1 (mod p°).

The binomial formula applied to (1 + p)™ shows that

e—1

(I+p? =1 (mod p°)
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and _2
(1+p)  #1 (mod p)

since p # 2. This gives m = p°~!. Thus (a) has the same order as S, i.e.,
S = (a). The binomial formula also shows the statement for § = ab .

(b) As in (a) the binomial formula applied to (1 + 22)2k, k € N, shows that
(1+2)* 7 =1 (mod 29)

and
(14227 #£1 (mod 2°).

This implies, much as in (a), that the automorphism ¢ defined by

2
R R

has order 2¢72. From
(1+2%#£ -1 (mod2°) (e>3),

for all k € N, we finally conclude that no power of 4 is equal to the automor-
phism ~ defined by 27 = 271. Hence (y) and (§) generate a subgroup of
order 2¢72.2 =271 in §(= A). This implies A = () x (§). The equation
26 = 21727 follows from

(1+2)* " =1+2°" (mod 2°).

26

Finally 27 = 22~ holds since

_ e—1 _1_9e—1 _9e—1 e—1
gl = 27 = (z7HIHE = g2 and 7% = 2% . O

It should be emphasized that in case 2.2.6 (b) the automorphism group A
is not cyclic but contains a subgroup isomorphic to Zs X Zs.

Exercises

Let p be a prime and G a finite group.

1. Let ¢ # 1 be a divisor of p — 1. Use a semidirect product to construct a
non-Abelian group of order pq that contains a normal subgroup of order p.
Also construct a non-Abelian group of order pl¢~1¢ e > 2, that contains a
cyclic normal subgroup of order p°.
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2. Let p be the smallest prime divisor of |G| and N be a normal subgroup of
order p. Then N < Z(G).

3. Let p# 2 and G a cyclic p-group. Then Aut G is cyclic.

4.  With the idea used in the proof of 2.2.4 show: Let K be a field and U a finite
subgroup of the multiplicative group of K. Then U is cyclic.

In the following let G, 7,7, be as in 2.2.6 (b). Set
D:=®xG H:=nxG?° M:=/() xG.

5. D is a dihedral group.
6.  All the involutions of M are contained in (e, 22 ).

7. Let Hy and Hsy be subgroups of H defined by
Hy := (z%,n) and Hy := (2% nz).
Then
(a) HiNHy= (2% and |H:H;| =2, i=1,2.

(b)  Hj is a dihedral group and contains all of the involutions of H.

(¢)  H, contains exactly one involution.!?

9H is a semidihedral group; see 5.3.
0 H, is called a (generalized) quaternion group; see 5.3.



Chapter 3

Action and Conjugation

The notion of an action plays an important role in the theory of finite
groups. The first section of this chapter introduces the basic ideas and
results concerning group actions. In the other two sections the action on
cosets is used to prove important theorems of Sylow, Schur-Zassenhaus and
Gaschiitz.

3.1 Action

Let Q ={a,,...} be a nonempty finite set. The set Sq of all permuta-
tions of ) is a group with respect to the product

a™ = ("), a€Q and z,y€ Sq,

is the symmetric group on 2. We denote by S, the symmetric group
on {1,...,n}, which is the symmetric group of degree n. Evidently
Sp = Sq if and only if |Q] = n.

A group G acts on €, if to every pair (a,g) €  x G an element o9 € Q)
is assigned! such that

O a'=a for1=1g andall a €9,

Oy (a®)Y =a" forall z,y € G and all «a € Q.

! As in the definition of a group we are forming a product, but we write o instead of
ag.

95
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The mapping
g :Q—Q with a— of

describes the action of g € G on (). Because of
(ag)g’l @ 9t 1 Q& a,

(g~H™ is the inverse of ¢g™. In particular g™ is a bijection and thus a

permutation on 2. Now Oy implies that
m: G— Sq with g~ g"
is a homomorphism. The homomorphism theorem shows that G/ Ker 7 is

isomorphic to a subgroup of S and thus also to one of S, n = |Q].

Conversely, every homomorphism 7: G — Sq gives rise to an action of G
on €, if one defines a9 := a9". A homomorphism 7: G — Sq is said to be
an action of G on ().

If Ker m =1, then G acts faithfully on 2; and if Ker 7 = G, then G acts
trivially on €.

Every action m of G on € gives rise to a faithful action of G/Ker ¢ on €,

if we set
aKere)g . 9

Next we introduce some important actions, which we will frequently meet
in the following chapters.

3.1.1  The group G acts on

(a) the set of all nonempty subsets A of G by conjugation:

A5 o7 A = A7,

(b)  the set of all elements g of G by conjugation:

Z —1 T

g—x gr =g,

(c) the set of right cosets Ug of a fized subgroup U of G by right multi-
plication:
Ug = Ugz.
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Proof. In all cases 1 = 1 acts trivially; this is O;. Associativity gives Os.
O

In (a) and (b) the permutation z”™ is the inner automorphism induced by z
(see 1.3 on page 15).

Also left multiplication on the set €2 of all left cosets of a fixed subgroup U
leads to an action 7: G — Sq. But here one has to define
2": G — Sq with ¢U — 2 1gU

since gU + xgU is not a homomorphism (but an anti-homomorphism).2

Using (c) we obtain:

3.1.2 Let U be a subgroup of index n of the group G. Then G/Ug is
isomorphic to a subgroup of Sy

Proof. As in 3.1.1 (c) let Q be the set of all right cosets of U in G and
m: G — Sq the action by right multiplication. Then for z,g € G

1

Ugr = Ug < grg € U < x € UY,

and thus
2" =1g, <= z € Ug,

i.e., Ug = Ker 7. O

In order to work with the actions given in 3.1.1 we first set some notation
and collect some elementary properties of actions which follow more or less
directly from the definition.

In the following, GG is a group that acts on the set 2. For a € )
Go = {z e G| a” = a}.

The set G, is the stabilizer of o in G; and = € G stabilizes (fixes) « if
T € Ggy.

Notice that G, is a subgroup of G because of Os.

*We will use the action by left multiplication only in 3.3.
e = N UY
geG
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313 G, = Goo for ge G, a €.

Proof. (a9)* = a9 < 9% =q < grg '€ Gy < 2z € (Ga)?. O

Two elements «, 3 € € are said to be equivalent, if there exists x € G such
that o = 3. Then O; and O3 show that this notion of equivalence does
indeed define an equivalence relation on ). The corresponding equivalence
classes are called the orbits of G (or G-orbits) on Q2. For a € )

o = {o®| z € G}
is the orbit that contains a. G acts transitively on (2, if € itself is an orbit

of G, i.e., for all a, € Q) there exists x € G such that o* = (.

3.1.4 Frattini Argument. Suppose that G contains a normal subgroup,
which acts transitively on Q.* Then G = GoN for every o € Q. In
particular, Go s a complement of N in G if No = 1.

Proof. Let oo € Q and y € G. The transitivity of N on € gives an element
2 € N such that o = o®. Hence a¥® ' = « and thus yr~! € G, . This
shows that y € G,z C G, N. O

The following elementary result is similar to Lagrange’s theorem:

3.1.5 |a%| = |G : Gy for a € Q. In particular, the length |aC| of the
orbit o is a divisor of |G].
Proof. For y,x € G

1 1

o/ =a" <= ¥ =a & yr " € G, & y € Gaz. O

Since 2 is the disjoint union of orbits of G we obtain:

3.1.6 Ifn is an integer that divides |G : Go| for all a € Q, then n also
divides |Q] . O

4Of course, here we mean the action of N as a subgroup of G.
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For U C G
CqoU) :={aeQ|U C G}

is the set of fixed points of U in Q. Obviously, 2\ Cq(G) is the union of
all G-orbits of length > 1.

3.1.7 Let G be a p-group. Then

€] = |Ca(G)]  (mod p).

Proof. For a € 0 := Q\ Cq(G) the stabilizer G, is a proper subgroup
of G. Hence, p is a divisor of |G : G| (Lagrange’s Theorem), and 3.1.6
implies

| =0 (mod p). O
We now apply 3.1.3 and 3.1.5 using the actions given in 3.1.1.
Let Q be the set of all nonempty subsets of G and H < G. Then H acts by
conjugation on 2. For A € () the set consisting of the subsets

A* = ¢ Az (z € H)
is an orbit of H. The stabilizer
Ny(A) == {x € H| A" = A}

of Ain H is the normalizer of A in H.
By 3.1.5 |H : Ng(A)| is the number of H-conjugates of A.
Let B € Q2. Then B normalizes A if B C Ng(A).

By 3.1.1 (b) H acts by conjugation on the elements of G. For this action
the stabilizer

Culg) = {z € H|g" =g}

of g € GG is the centralizer of g in H. It is evident that this subgroup
consists of those elements x € H that satisfy xg = gz.

Because of 3.1.5 |H : Cy(g)| is the number of H-conjugates of g.

For a nonempty subset A of G
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is the centralizer of A in H. Thus, Cy(A) contains exactly those elements
of H that commute with every element of A. For example, Cz(A) = G if
and only if A is a subset of Z(G). A subset B C G centralizes A, if
B C Cg(A) (or equivalently [A, B] = 1; see page 25).

3.1.3 implies for = € G
NG(A)" = Ng(A") and Cg(A)" = Ca(AY);
and more generally
Np(A)* = Np=(A*) and Cg(A)* = Ch=(A”).

In the case H = G the G-orbit ¢© of the elements conjugate to ¢ is the
conjugacy class of g in GG, and

19| = |G : Calg).

The center Z(G) contains exactly those elements of G whose conjugacy class
has length 1, i.e., those elements that are only conjugate to themselves.

G is the disjoint union of its conjugacy classes since these classes are the
G-orbits with respect to the action by conjugation. This gives:

3.1.8 Class Equation. Let Ki,..., K} be the conjugacy classes of G
that have length larger than 1, and let a; € K; for i =1,...,h. Then

h
Gl = 12(G)] + ;IG:CG(%N- =

We note:

3.1.9 Let U be a subgroup of G. Then Ng(U) is the largest subgroup of
G in which U is normal. The mapping

¢: Ng(U) = AutU with z+— (u+— u”)

is a homomorphism with Ker ¢ = Cq(U) . In particular, Ng(U)/Cq(U) is
isomorphic® to a subgroup of AutU. O

We close this section with two fundamental properties of p-groups and p-
subgroups, which follow from 3.1.7.

®Homomorphism Theorem 1.2.5 on p. 13.
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3.1.10 Let P be a p-subgroup of G and p be a divisor of |G : P|. Then
P < Ng(P).

Proof. By 3.1.1 (c) P acts on the set €2 of right cosets Pg, g € G, by right
multiplication, and
Q=|G: P|=0 (mod p).

From 3.1.7 we get (with P in place of G):
|ICo(P)| = 19/=0 (mod p).
Moreover Cq(P) # @ since P € Cq(P). Hence there exists Pg € Cq(P)

such that P # Pg. This implies ¢ ¢ P and PgP = Pg. Thus gPg~! =P
and g € Ng(P) \ P. O

3.1.11  Let P be a p-group and N # 1 a normal subgroup of P. Then
Z(P)N N # 1. In particular Z(P) # 1.

Proof. P acts on ) := N by conjugation, and
Cq(P) = Z(P) N N.
Since N is a p-group we get from 3.1.7
[Ca(P)] =12 = 0 (mod p).

Now 1 € Cq(P) gives |Cq(P)| > p. O

Exercises

Let G be a group.

1. Let G be the semidirect product of a subgroup K with the normal subgroup
N, and let € := N. Then

W= WP (weQ, ke K, neN)

defines an action of G on .
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2. If G acts transitively on Q, then Ng(G,) acts transitively on Cq(Gq) (a0 €

3. Let p be the smallest prime divisor of |G|. Every subgroup of index p is
normal in G.

4. Let U <G and 1# |G:U| <4. Then |G| <3, or G is not simple.
5. Suppose that the class equation of G is

60 =1+ 15 + 20 + 12 + 12.

Then G is simple.

6. Suppose that G acts faithfully on the set 2. Let A be a subgroup of G that
is transitive on . Then |Cg(A)| is a divisor of |Q2|. If in addition A is
Abelian, then Cg(A) = A.

7. Let @#ACG. Then AC Ce(Cg(A)) and Cq(Cq(Ca(A))) < Ca(A).
8. Let A be a normal subgroup of G and U < Cg(A). Then [U,G| < Ca(A).
(a) AQG, UG = Cy(A)QU;

(b) AcharG = C(Cg(A)charG and Ng(A)charG.

10. Let K be a field and V a vector space of dimension |G| over K. Then G is
isomorphic to a subgroup of GL(V).5

©

3.2 Sylow’s Theorem

In this section Sylow’s Theorem is proved. For every prime power divisor
p’ of |G| this theorem establishes the existence of a subgroup of order p’ in
G.7 This serves as the basis for a method, which turned out to be extremely
successful in the theory of finite groups: The analysis of finite groups by
means of the normalizers of nontrivial p-subgroups.

First a classical theorem from the first half of the nineteenth century.

3.2.1 Cauchy’s Theorem.® Let G be a group and p a prime dividing
|G|. Then G contains an element of order p; in particular there exists a
subgroup of order p in G.

6GL(V) is the group of bijective linear mappings of V; see 8.6.

"If G is Abelian, then G possesses a subgroup of order n for every divisor n of |G|, and
this is also true for nilpotent groups; see 2.1.4 on page 45 and 5.1 on page 99 .

8Compare with [37], p. 291.
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Proof.?  Let
Qi={z:=(@1,....2p) | 21,...,2p € G and zxg- -2, =1}
Since the components z1,...,z,-1 of £ € () can be chosen independently

(after which x;, uniquely determined) we get
Q] = |GIP"! =0 (mod p).

Notice that

T1x- -k =1 & xg---xp::bl_l & w2 Tpr = 1,

so the cyclic group C, = (a) acts on 2 by

(21,22, ..., 7p) v (T2, ..., Tp, T1).

Hence 3.1.7 implies
[Cal(a)] = |9

Since 1 =(1,...,1) € Cq({(a)) there exists & = (x1,...,2p) #1 € Cqo((a)).
This shows that 1 = ... =2, #1 and 2/ = 1. O

0 (mod p).

In the following let p be a prime and G a group. A p-subgroup P is called
a Sylow p-subgroup of G if no p-subgroup of GG contains P properly.
Thus, the Sylow p-subgroups of G are the maximal elements of the set of
p-subgroups of G (ordered by inclusion). We denote the set of Sylow p-
subgroups of G by Syl,G.

For example, Syl, G = {1} if p is not a divisor of G (Lagrange’s Theorem);
and Syl, G = {G} if G is a p-group. Since automorphisms of G' map Sylow
p-subgroups to Sylow p-subgroups the subgroup

Op,(G):= ( P
PeSyl, G

is a characteristic p-subgroup of GG. More precisely:

3.2.2  Let N be a normal p-subgroup of G.1° Then N < O,(G).

“Following J.H. McKay.
10That is, a normal subgroup that is a p-group.
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Proof. Let P € Syl,G. Then NP is a p-subgroup (1.1.6). The maximality
of Pand P < PN gives N < P. O

In particular, if a Sylow p-subgroup P of G is normal in G, then Syl, G =
{P} and P is the set of all p-elements of G. Such a group is said to be p-
closed. Moreover, if G is p-closed and xP, = € G, is a p-element of G/P,
then (z)P is a p-group and thus z € P. Now Cauchy’s Theorem shows that
p does not divide |G/P|.

If P is a p-subgroup of G and p does not divide |G : P|, then Lagrange’s
Theorem shows that |P| the largest p-power dividing |G|, and P € Syl, G.
In general:

3.2.3 Sylow’s Theorem [89]. Let p° be the largest p-power dividing
the order of G.

(a)  The Sylow p-subgroups of G are exactly the subgroups of order pc.
(b)  The Sylow p-subgroups of G are conjugate in G. In particular

|Syl, G| = |G : Ng(P)| for P € Syl,G.

() ISyl,G] =1 (mod p).

Proof'' Let P be a Sylow p-subgroup of G. Then P is also a Sylow p-
subgroup of

U := Ng(P).
Hence as mentioned above
(1) U is p-closed and |U:P| # 0 (mod p),
We claim
(2) G:U| =1 (mod p).

To prove this we investigate the action of P on the set ) of all cosets Ug,
g € G. Then |Q| = |G :U| and by 3.1.7

[Ca(P)| =[] (mod p).

" Other proofs can be found in [97], [40], and [41], for example.
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Uisin Cq(P) since P < U. Let Ug € Cq(P). Then UgP = Ug, and
this implies gPg~' < U. As U is p-closed, we get gPg~! = P and thus
g € Ng(P)="U. It follows that Cq(P) = {U}. This shows (2).

Let S be another Sylow p-subgroup. Then also S acts on 2 by right mul-
tiplication. Thus (2) and 3.1.7 give a coset Ug such that UgS = Uyg. It
follows that ¢gSg=! < U and thus ¢gSg~! = P by (1). This implies (b).
Now (c) follows from (2) and

|Syl, G| = |G : Ng(P)| = |G :U]|.
In addition (a) holds since

G| = |P|[U: P||G = U,

where the second and third factors are not divisible by p ((1) and (2)). O
We note some consequences.

3.2.4 Let p' be a divisor of the order of G. Then G possesses a subgroup
of order p.

Proof. We proceed by induction on |G|. Because of Sylow’s Theorem we
may assume that G is a nontrivial p-group. By 3.1.11 Z(G) # 1. Let N
be a subgroup of order p in Z(G). Then induction, applied to G/N, gives a
subgroup U/N, N < U < G, such that |U/N|=p'~!l. Hence |U|=p'. O

3.2.5 Let N be a normal subgroup of G and P € Syl,G. Then

PN/N € Syl,G/N and P N N € Syl,N.

Proof. Both claims follow from 3.2.3 (a): In the chain of subgroups
1< PNNSN<IKPNLG

we get |[PNN||PN/N|=|P| since PN/N = P/PNN (1.2.6 on page 13).
Hence |N : PN N| and |G : PN| are not divisible by p. O
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3.2.6 Let U be a p-subgroup but not a Sylow p-subgroup of G. Then
U < R for every Sylow p-subgroup R of Ng(U).

Proof. If P € Syl,G with U < P, then U < Np(U) by 3.1.10. Hence U is
not a maximal p-subgroup of Ng(U). On the other hand, U is contained in
every Sylow p-subgroup of Ng(U) since U < Ng(U) (3.2.2). O

A variant of 3.1.4 yields an important factorization:
3.2.7 Frattini Argument. Let N be a normal subgroup of G and P €

Syl, N. Then G = Ng(P)N.

Proof. G acts on the set {2 = Syl, N by conjugation, and the stabilizer of
P is Ng(P). Moreover, by Sylow’s Theorem N is transitive on ). Hence,
the claim follows from 3.1.4. O

The following result is an application of the Frattini argument:

3.2.8 Let N be a normal subgroup of G with factor group'? G := G/N,
and let P be a p-subgroup of G. Assume that (|N|,p) =1. Then

Nz(P) = Ng(P) and Cx(P) = Ca(P).

Proof. The definition of a factor group gives

Ng(P) = Na(NP).

P is a Sylow p-subgroup of NP since (|N|,p) = 1, and NP is a normal
subgroup of Ng(INP). Hence, the Frattini argument gives

Ng(NP) = NP Ny, np)(P) = NPNg(P) = N Na(P)

and thus the claim Ng(P) = Ng(P).

It is evident that C(P) < Cz(P). Let ¢ € Cx(P). Since Cx(P) < N5(P)
there exists n € N and y € Ng(P) such that ¢ = ny. Hence ¢ =7 and

Nz = (Nz)Y = NzY forall x € P.

12Bar convention, see p. 14.
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The commutator y 'zyz~! isin NN P = 1. It follows that y € Cg(P)
and thus Cx(P) = Ca(P). O

This yields a result that we will need later in Chapter 11:

3.2.9 Let G = NH be a factorization of G with H < G, N I G and
(p,|N|) = 1. Then for every p-subgroup P of H

Ng(P) = (N N Ng(P))(H N Ng(P)).

Proof. Let G := G/N and N; := NN H. By 3.2.8
Ny/n, (PN1/N1) = N (P)Ny/Ny.
The isomorphism (1.2.6 on page 13)
H/N, = HN/N (= G)

shows that

Ng(P) = Ng(P) = Ny (P).

This implies
Nu(P) < Ng(P) < N Ny(P),

and the claim follows from the Dedekind identity 1.1.11. O

The alternating group As is a simple group of order
60 = 22-3-5

(for the definition, order and simplicity see Section 4.3). On the other hand,
using Sylow’s Theorem one can show that there are no non-Abelian simple
groups of order less than < 60.

We will now use Sylow’s Theorem—in particular 3.2.3 (¢)—to determine the
structure of a group of order 60, which is not 5-closed. First two remarks:

3.2.10 Let G be not 3-closed and |G| =12. Then G is 2-closed.
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Proof. Let S € Syls G. Then

3.2.3(b
n= ISy, G| 22 G Ne(s))

is a divisor of % = 4. Now 3.2.3 (c) implies n = 4. Since different Sylow
3-subgroups (= C3) of G intersect trivially there are exactly

4.(3-1) =38

elements of order 3 in G. Hence, the number of 2-elements in G is at most
4, and G contains a unique Sylow 2-subgroup. O

3.2.11 Let |G| € {5, 10, 15, 20, 30}. Then G is 5-closed.

Proof. We show |SylsG| = 1. For |G| # 30 this follows directly from 3.2.3
(b), (c). In the case |G| = 30 we show that the assumption n := [Syl;G| > 1
leads to a contradiction: Again 3.2.3 (c¢) gives n = |Syl;G| = 6. As different
subgroups of order 5 intersect trivially there are 6 - 4 = 24 elements of
order 5 in G. Let ¢t be an involution of G (3.2.1) and S € Syl;G. Then
t%| = 5 since Ng(S) = S. Hence there is no element of order 3 in G, which
contradicts 3.2.1. O

3.2.12  Let G be a group of order 60, which is not 5-closed.

(a) G is simple.
(b)  Let M be the set of mazximal subgroups of of G. Then

M = {Na(Gp) | Gp € Syl, G, pe{2,3,5}},

and
12, p=2
10, p=2>5
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Proof. In the following G), p € m(G), always denotes a Sylow p-subgroup
of G. By our hypothesis |G : Ng(G5)| # 1. Hence 3.2.3 implies

(1) [Na(Gs)| = 10.

(a) Assume that G is not simple. Then G contains a a proper nontrivial
normal subgroup N. If 5 € w(NN), then N contains a Sylow 5-subgroup G5
of G, which by 3.2.11 is normal in N. But then G35 is characteristic in N and
thus normal in G (1.3.2). This contradicts the hypothesis. Hence 5 & w(N)
and thus 5 € 7(G/N). By 3.2.11

1 # GsN/N < G/N,

and NG5 < G. As seen above, NG5 = G since 5 € m(NG5). Thus every
proper nontrivial normal subgroup N of G has order 12. But then 3.2.10
shows that N contains a normal and thus characteristic Sylow subgroup,
which has to be normal in G but is not of order 12. This final contradiction
shows that G is simple.

(b) By (a) |G : Ng(Gp)| # 1 for p € {2,3}, and 3.2.3 and (1) imply
(2) [Na(Gs)| = 6

and |Ng(G2)| € {4,12}. Together with (2) and 3.2.10 we obtain:
(3) Every subgroup of order 12 in G is 2-closed.

Next we show:
(4) |NG(G2)| = 12.

More precisely, we show that |Ng(G2)| =4 leads to a contradiction: Then
ISyl,G| = 15, and G+ is Abelian since it has order 4. Let Si,S5, € Syl,G
such that

1 £ 85 NSy < 85.

Then
<Sl,S2> < Ng(Sl N SQ) =: L

and L # G by (a). If 5 € w(L), then L is 5-closed (3.2.11) and L <
N¢g(Gs), which contradicts (1). It follows that |L| = 12. Since [Syly L| > 2
this contradicts (3).
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Hence S1 NSy =1 for any two different Sy,S2 € Sylo G. 1t follows that
there are 3-15 = 45 2-elements in G. On the other hand, by (1) there are
also 4 -6 = 24 elements of order 5 in G. This contradiction proves (4).

Let M be a maximal subgroup of G. By (1), (2), and (4) M is not a
Sylow subgroup of G. If 5 € w(M), then M is 5-closed by 3.2.10. Hence
M < Ng(Gs) for G5 < M and thus M = Ng(G5).

We now may assume that 5 ¢ 7(M) and |M| € {6,12}. If |M| =6, then
M is 3-closed and M = Ng(G3) for Gg < M. If |M| =12, then by (3) M
is 2-closed and M = Ng(G2) for G < M. O

Let G be as in 3.2.12 and U := Ng(G2). Then |G : U| = 5, and 3.1.2
yields a monomorphism from G into the symmetric group S5. Hence G is
isomorphic to a subgroup A of index 2 in S5. Let As be the alternating group
of degree 5 (see Section 4.3). Then also |S5 : As| = 2, so A and As or both
normal subgroups of order 60 in S5. In particular by the Homomorphism
Theorem |A : AN As| < 2, and the simplicity of A yields A = As. This
shows that every group of order 60 that is not 5-closed is isomorphic to As.

Exercises

Let G be a group, p a prime and S € Syl, G.

Let Ng(S) <U <G. Then |G :U|=1mod p.
{g € G| g* =1} =0 mod p for all prime divisors p of |G].
Let |G| = 168. How many elements of order 7 are in G?

Every group of order 15 is cyclic.

A

Let p,q,r be different primes.

(a) A group of order pg contains a normal Sylow p-subgroup, if p > q.

(b) A group of order pgr contains at least one nontrivial normal Sylow
subgroup.

6. Let H<G and |G : H| = p". Then the following hold:

(a)  Op(H) < 0y(G).
(b) If HNH” =1 forall z € G\ H, then G is p-closed.

7. Every non-Abelian group of order less than 60 is not simple.

8.  Every simple group of order 168 contains a subgroup of index 7.
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9. Let SNSY=1 forall g€ G\ Ng(S). Then |Syl, G| =1 mod |S].

10. Let S#1 and |G:S|=p+1. Then Oy,(G)#1,0or p+1=¢q", ¢ € P, and
there exists an elementary Abelian normal subgroup of order p+ 1 in G.

11.  (Brodkey, [33]) Let S be Abelian and O,(G) = 1. Then there exists g € G
such that SN SY9 = 1.

12.  Suppose that G # 1 and |G : M| € P for every maximal subgroup M of G.
Then G contains a normal maximal subgroup or G = 1.

3.3 Complements of Normal Subgroups

To find complements of normal subgroups is one of the basic problems of
group theory. In general such complements do not exist. For example, the
center of a quaternion group () does not have a complement since there is
only one involution in @ (see Exercise 8 on page 20); also, proper subgroups
of cyclic groups do not have complements.

This leaves the problem of finding suitable conditions that allow us to es-
tablish the existence of such complements. For example, let G be a group
and K a normal subgroup of G such that G/K is a p-group and p does not
divide |K|. Then Sylow’s Theorem shows that the Sylow p-subgroups of G
are the complements of K; in particular, all complements of K are conjugate
in G.

In this section we use a method of Wielandt to prove similar results in a

more general situation.!3

In the following let K be an Abelian subgroup of the group G and S the set
of all transversals of K in G (1.1.9 on page 8).

For R,S € S define

R|S = [T (s (€ K);
(r,s)eRxS
Kr=Ks

note that
Kr = Ks < rs ' € K.

The ordering of the factors in this product is unimportant since K is Abelian.

13The idea for the proof of Gaschiitz’s Theorem was communicated to us by G. Glauber-
man.
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For R,S5,T € S we get

(1) (RIS)™" = S|R,

(2) (RIS) (S|T) = RIT.

We now assume in addition that K is a normal subgroup of G. Then every
S € S is also a left transversal of K in G, i.e.,

G = U sK.
seS

G acts by left multiplication on S (see page 57):
(S,z) — xS (xe€G, SeS8).

In particular

(3) kR|S = K%Kl (R|S) for ke K.
Now

zR|zS = T[] z(rs Yz! = z(R|S)z~!
implies
(4) RIS=1 = zR|zS = 1.

We now assume in addition that |K| and |G/K| are coprime. Then the
mapping
a: K — K with &~ k9K

is an automorphism of K since K is Abelian (see 2.2.1 on page 49). Thus
(3) implies

(5) kR|S = 1 for k:= (R|S)™*
(ie. KEIG/El = (R|S)™1), and
(6) RS =1=FkRS = k=1

The statements (1)—(6) are the crucial steps in the proof of our main result:
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3.3.1 Theorem of Schur-Zassenhaus.'* Let K be an Abelian normal
subgroup of G such that (|K|,|G : K|) = 1. Then K has a complement in
G, and all the complements of K are conjugate in G.

Proof. Because of (1) and (2) the relation
R~S << R|S=1

is an equivalence relation on S. Let R be the equivalence class, which
contains R. By (4)

ST = 4718, (z€Q)
defines an action of Gon S/ ~. If R, S € S and k is as in (5), then RF = §;

i.e., K acts transitively on S/ ~. On the other hand, by (6) the stabilizer
of R in K is trivial. Hence, the Frattini argument shows that the stabilizer

Gz = {reG | zR|R=1}

is a complement of K in GG. Conversely, if X is a complement of K in G,
then zX = X and zX|X =1 for all z € X. Thus X = Gy for X = R,
and all complements of K are conjugate by 3.1.3 since K acts transitively
on S/ ~. O

In chapter 6 we will generalize this Theorem of Schur-Zassenhaus allowing
K to be non-Abelian (see 6.2 on page 125).

We now investigate a more general situation. Let
K<U<G and K JdG.

If H is a complement of K in G, then H NU is a complement of K in
U (Dedekind identity). The opposite implication is treated in Gaschiitz’s
Theorem. For K = U this theorem coincides with the Theorem of Schur-
Zassenhaus, but in contrast to that result, Gaschiitz’s Theorem does not
generalize to non-Abelian K.

3.3.2 Gaschiitz’s Theorem [48|. let K be an Abelian normal subgroup
of G and U a subgroup of G such that

K <U and (|K|,|G:U|) =1

4Compare with [82] and [19], p. 126.
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(a)  Suppose that K has a complement in U. Then K has a complement
in G.

(b)  Suppose that Hy and Hy are two complements of K in G such that
HonU=H NU.

Then Hy and Hy are conjugate in G.

Proof. 1t should be mentioned that the following proof coincides with that
of 3.3.1if U = K. Let A be a complement of K in U, i.e.,

(i) U=KA, KnA=1.

Let £ be the set of left transversals of U in G, and let Sy be a fixed element
of L. Then for every left transversal L € £ and ¢ € L:

(ii) { = spkpap with sp € Sy, ke € K, ap € A and s,U = (U.

Moreover, because of (i) the factorization of ¢ in (ii) is unique. In particular,
for every ¢ € L there exists exactly one ¢y € SoK such that (U = (yU,
namely £y := sgky.

Hence, every L € L is associated with an element Lo := {{y| £ € L} in
S ={LeL|L C SK}

such that LA = LyA. The uniqueness of the factorization in (ii) also gives:
(ili) Lo is the unique element of S such that LA = LyA.

For x € G and the left transversal xL € L one gets
(:EL)OA = xLA = Q’,‘L()A = (Q’,‘Lo)oA,

and thus by (iii)
(iv) (xL)p = (zLo)o for all L € L.

We now define
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(v) S%:=(z719)g for S €S and » € G.

Since
(7)Y = (@1 8)0)e ¥ (y @80 = ((wy)'S) = S

(v) defines an action of G on S. In the following we always write (z.5)g
instead of S* ' since we want to use the notion

RIS:= [ (rs)) (RSeS)
(r,s)eRxS
Kr=Ks

which is slightly more general than that introduced at the beginning of this
section. First we discuss the statements (1)—(6) given there for our more
general set-up: (1) and (2) follow as there. For the proof of (3) observe that
for k'€ K and S€ S

kS C kSoK = SoK,
and thus by (iii) &S = (kS)p € S. This implies statement (3):
(kS)o|R = KI¥KI(S|R) for ke K and S,R e S.

For the proof of (4) let z € G and (r,s) € R x S such that Kr = Ks,
where as above R,S € §. We apply (ii) using the notation given there.
Then

xr = Sgrkgraz, and xs = Smsk:csax&

and xrK = xsK yields
SerKagr = SpsKags.

This implies s = szs and also ag, = azs since K N A =1. We get

1

(xr)o(acs)al = :Ura;rl(a:sa;s Lp—1

)yl = arsTl
and thus
(zR)o|(2S)o = x(R|S)z! forall x € G and R, S € S.

Now the statements (4)—(6) follow as in the beginning of this section. As in
the proof of the Theorem of Schur-Zassenhaus

R~S < RIS =1
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defines an equivalence relation on &, and the existence of a complement
follows as there, using the action of G and K on S/ ~.

Let Hy, H; be as in (b). Then
A=UnNHy=UnNH

is a complement of K in U; and a left transversal of A in H; (i =0,1) is
also a left transversal of U in G. Let Sy be a fixed left transversal of A in
Hy and S be defined with respect to Sy as before. For every s € Sy there
exists a ks € K such that sks € Hy (ks =1 if s € HyN Hy). Now

S1 = {Sks| S € S()}

is a left transversal of A in H; with S; C SyK, ie. S1 € S.

By (ii) we have (L;)o = S; for every left transversal L; of U in G that is
contained in H;. In particular (zS5;)g = S; for all = € H;. Hence, H; fixes
the equivalence class of S/ ~ that contains S; (i =0,1).

Now as in the proof of 3.3.1 the transitive action of G on &/ ~ implies that
Hy and H; are conjugate in G. O

Exercises

Let G be a group and ®(G) the intersection of all maximal subgroups of G.*°

1. Let N be an Abelian minimal normal subgroup of G. Then N has a comple-
ment in G, if and only if N £ ®(G).

2. Let N be an Abelian normal subgroup of G such that N N ®(G) = 1. Then
N has a complement in G.

3. Let Ni, Ny be normal subgroups of GG. If N; has a complement L; in G
(i =1,2) such that Ny < Lq, then also NyNs has a complement in G.

4.  Let p € m(G) and K be an elementary Abelian normal p-subgroup of G such
that
K = (K nZ(S)|S €Syl,G).

Then K = [K,G]Ck(G).

5®(@) is the Frattini subgroup of G; see 5.2.3 on p. 105.



Chapter 4

Permutation Groups

Let 2 be a set. A group G that acts faithfully on 2 is a permutation
group on 2. Every permutation group is isomorphic to a subgroup of Sq,
and every subgroup of Sq is a permutation group on ().

The concept of a permutation group is not only interesting in its own right
but also can be used to investigate and describe groups in general.

4.1 Transitive Groups and Frobenius Groups

In the following let G be a group that acts on the set 2. Suppose that G
also acts on another set €)'. These two actions are equivalent if there exists
a bijection p: Q — € such that

(B¥)P = (BP)* forall B, z€G.

From now on we assume that G acts transitively on €2. Let a € 2 be fixed.
Set
U:=G, and Q :={Ug|geG}.

Then G acts by right multiplication on €’ (3.1.1 (c) on page 56). As in the
proof of 3.1.5 we obtain for g € G

Ug ={xzeG|a”=0a%}.
Hence the mapping

p: Q2 — Q' with o Uyg

77
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is a bijection satisfying

Thus:

4.1.1  Let G act transitively on Q and o € ). Then this action is equiva-
lent to the action of G on the set of right cosets of G by right multiplication.
O

In this sense every transitive action of G can be understood as an action on
the right cosets of a subgroup.! Hence, every statement about the transitive
action of G on 2 can be reformulated as a statement about the internal
structure of G.

The action of G on 2 is regular if, for every pair (a,3) €  x €, there
exists exactly one g € G such that o9 = 3. If N is a normal subgroup of G
that acts regularly on €2, then N is called a regular normal subgroup of

G.
4.1.2  The following statements are equivalent:

(i) G acts regularly on Q.

(ii) G acts transitively on Q and Gy =1 for some v € Q.

Proof. The implication (i) = (ii) holds by definition.

(i) = (i): Let a,8 € Q and x,y € G such that o = oY = [ ie.,
zy~! € G,. By 3.1.3 G, is conjugate to G, and thus z = y. a

4.1.3 Let G be a transitive Abelian permutation group on . Then G
acts regularly on €2.

Proof. (G,)? = G4 for all g € G and a € Q since G is Abelian. Hence
G, fixes every element in o = Q. This gives G, = 1 and together with
4.1.2 the regularity of G. O

! Conversely, every such action is transitive.
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4.1.4 Let a € Q and N be a regular normal subgroup of G. For (3 € Q
let xg € N be the unique element of N such that o™ = (3. Then for all
B eQ and g € Gy

(Ig)g = Xgg.
In particular, the action of Go on Q\ {a} is equivalent to the action of G,
on N# by conjugation.

Proof. We have (9 = (a®8)9 = (ag)g_lfﬂﬁg = a@s)?, 0

We now introduce a class of permutation groups that will play an important
role in later chapters, and whose internal structure is well understood.

Let G be a permutation group on 2 and |2| > 1. Then G is a Frobenius
group on () if

e ( acts transitively on (2;

o G, #1 forany a €

o G,NGg=1forall a,B€), a#p.

Let G be a Frobenius group on €2, « € €2, and
H = G,.
The transitive action of G on () gives
{H7] ge G} = {Gg| f €},
and F:= G\ |J HY is the set of elements of G that do not have any fixed

geG
point in ). Let

K = F U {1g}.
Then

F G# = K# U ) (H9)#?
geG

is a partition of G#.3

K# .= F.
3This partition is a Frobenius partition of G.
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415 |Q=|K|=|G:H|=1 (mod |H|).

Proof. F implies
K| = |G| = |G- H|(|H| -1) = |G: H| = [Q].

By our hypothesis H NGg =1 for all 5 € Q\ {a}. Hence, all orbits of H
on 2\ {a} have length |H| (3.1.5). This yields || = 1(mod |H]). O

The subgroup H is a Frobenius complement of GG. Clearly all subgroups
conjugate to H are also Frobenius complements of GG. The set K is the
corresponding Frobenius kernel of G.

The fundamental result about Frobenius groups is Frobenius’s Theorem be-
low, which we will not prove, apart from a special case.

4.1.6 Frobenius’s Theorem. The Frobenius kernel of a Frobenius
group 1s a normal subgroup.

By this theorem a Frobenius group G is the semidirect product of a Frobe-
nius complement H with the Frobenius kernel K. In particular, K acts
transitively on (2, so K is a regular normal subgroup of G.

For the proof of 4.1.6 it suffices to show that K is a subgroup of G since
K is invariant under conjugation by elements of G. This can be done using
character theory.* Up to now no purely group-theoretic proof is known for
this result. But in the case |[H| =0 (mod 2) an elementary calculation
with involutions gives the desired conclusion. We will do this on page 83,
below.

Next we give an internal description of Frobenius groups, in the sense of the
remark made at the beginning of this section:

4.1.7 Let G be a group, H a nontrivial proper subgroup of G and € =
{Hg| g € G}. Then the following statements are equivalent:

(i) G is a Frobenius group on Q with Frobenius complement H.

(il) HNHY=1 forall ge G\ H.

*See [46] and more recently [9], for example.
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Proof. (i) = (ii): For g € G\ H and « := H € Q) the element [ := a9 € Q
is different from o, and Gg = HY (3.1.3). This gives H N HY = 1.

(ii) = (i): G acts transitively on Q by right multiplication. Let o = Hgy
and 5 = Hgy be two different elements of 2. Then g := ga2g; e G\ H and

Go NGy = HY N H” = (H NHY)% = 1. 0

We use 4.1.7 to give a second definition of Frobenius groups. A nontrivial
proper subgroup of the group G is a Frobenius complement of G if

HnN HY =1 forall ge G\ H,

and G is a Frobenius group (with respect to H), if G possesses such a
Frobenius complement H. As before,

K = (G\ U Hg) U {1}

geG

is said to be the Frobenius kernel of G (with respect to H). By 4.1.7 such
a group G is a Frobenius group on the set Q:={Hg| g € G}.

This second definition seems to be more general than the version for per-
mutation groups. But we will see in 8.3.7 on page 195 (using 4.1.6) that
in a Frobenius group (in the above sense) all Frobenius complements are
conjugate.

First two remarks, which do not need 4.1.6.

4.1.8 Let G be a Frobenius group with Frobenius complement H and
Frobenius kernel K.

(a) Let U be a subgroup of G such that U € K, and let x € G such that
H*NU # 1. Then either U < H* or U is a Frobenius group with
Frobenius complement H* N U and Frobenius kernel U N K.

(b) Let Hy be another Frobenius complement of G such that |Hp| < |H|.
Then Hy is conjugate to a subgroup of H.

Proof. Since H is a Frobenius complement of G we get

U H| = |G HI(H| = 1) + 1 = |G| — [G: H| +1,
geG
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and thus

() U Hg‘ > 14,
geG

(a) We may assume that H = H* and UNH # U. Now H # H" for
ueU\(HNU) and

(HNnU)NHNU" < HNH"=1.

Hence, H NU is a Frobenius complement for U.

Letg € G such that HINU # 1. If U < HY9, then H N HY # 1 and thus
H = HY, which contradicts U N H # U. Hence 1 # HINU # U, and
HY9NU is also a Frobenius complement of U. From ('), applied to U and
the two Frobenius complements H N U and HY9 N U, there exists u; € U
such that

(HNnU)N (HINU)" £ 1.

It follows that H N H9"' # 1 and thus H9' = H and (HYNU)“* = HNU.
We have shown that

U@E AU = | (HNU).
uelU geG

Hence K NU is the Frobenius kernel of U (with respect to H NU).
(b) Assume that Hy £ H” for all x € G. Then (a) implies for U := Hy

m = |Hf n K| > 1.

Because Hj is a Frobenius complement of G and K is invariant under con-
jugation, we get

G:H| 'Y |K| > |U HF N K)*| +1=m|G: Hy| + 1.

zeG

On the other hand, by our hypothesis |Hp| < |H|, and thus
|G : Hy| > |G : H|,

a contradiction. O

Examples of Frobenius groups are:
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e The dihedral groups D3, of order 2n, n > 1, n odd. Here the
Frobenius complements are the subgroups of order 2.

e Let K be a finite field. Then the multiplicative group K* acts by
right multiplication on the additive group K (4). The corresponding
semidirect product K* x K(4) is a Frobenius group with Frobenius
complement K*.

The proof of 4.1.6 for the case |H| = 0 (mod 2) (Bender):
Let ¢ be an involution in H and g € G\ H. Then either

a = tty = [t,g]
is in K, or there exists © € G such that 1 # a € H*. In the second case
a € H*NH" N H*

since at = a~! = a¥’, and we get H* = H* = H* and t,t9 € H*. But
now H* = H, which contradicts ¢t € H and t9 ¢ H. We have shown:

(%) tt9 € K, ifge G\ H.
Let {g1,...,9n} be a transversal of H in G, n:= |G : H|. Since
1Y = 195 = {9 = {95 = 999 — e g9ig; € H
the elements tt9', ..., tt9" are pairwise distinct. We get that
K = {#t9, ... tt9)
since |K| = n. Conjugation with t gives
K = {t9, ... t9t}.

As mentioned above it suffices to show that K is a subgroup, i.e., to show
that KK C K. For every t9%t there exists g, such that t9¢t = tt9°. Hence

o (%)
(H9) (1) = tET = L)Y = 949 = (199 )9 € K9 = K.

O
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4.2 Primitive Action

As before GG is a group acting on the set 2. A nonempty subset A C Q) is a
set of imprimitivity, if for every g € G:

AV £EA = ANINA=25

It is evident that also AY is a set of imprimitivity.

For aa € 2 and H < G with G, < H we set
A = ofl.

Forall g G\ H
AI = o9

has an empty intersection with A, i.e., A is a set of imprimitivity.

We now assume that G acts transitively on 2. Let o € Q2 and A be a set of
imprimitivity with o € A. Then

A = o

where

H = Gp = {z e G| A" = A}.

Thus, the sets of imprimitivity containing « correspond to the subgroups
of G containing Gj.
Let A be a set of imprimitivity and ¥ := {AY9| g € G}. The transitive
action of G on (2 gives
Q= J AY.
A9IeY

Hence, the action of G on {2 can be understood as composition of the tran-
sitive action of G on X and the transitive action of GaA on A.

The action of G on 2 is imprimitive if there exists a set of imprimitivity
A such that

1 # |A] # (9] °
otherwise the action is primitive.

In this section we discuss the primitive case, later in Section 4.4 the impri-
mitive case. As we have seen above:

PAY = {af| a € A}.
®Then also 1 # |X| # [Q|.
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4.2.1 Let G act transitively on Q. Then G s primitive on ) if and only
if Go is a mazimal subgroup of G (« € Q). O

4.2.2 Let G be a primitive permutation group on €2 and 1 # N < G.
Then N acts transitively on G. If in addition N is reqular on €2, then N is
a minimal normal subgroup of G.

Proof. Let a € Q. By 4.2.1 G, is a maximal subgroup of G. If N < G,
then N acts trivially on Q = o© (3.1.3 on page 58), which contradicts
N # 1. Thus we have Gy < GoN = G, and Q = a® = o¥ follows.

Assume that N acts regularly on 2. Then every normal subgroup 1 # M <
G with M < N is also regular on (). It follows that

IN| =[] = [N =[] = o] = |M]|

and thus N = M. O

For n € N and n < || we set
QM = {(aq,...,00) € Q"] oy # o for i # 5}

We say that G is n-fold transitive on Q if, for any two (ai,...,ay),
(B1,...,0n) € QU there exists g € G such that

Oéig = ﬂz for = 1,...,7’L,
i.e., the componentwise action of G on Q™ defined by
(a1, ... ap)? == (a1?,...,09) (9 € Q)

is transitive. Clearly n-fold transitivity implies m-fold transitivity for all
1 < m < n. Suppose that G is (n — 1)-fold transitive on . Then G is

n-transitive on € if and only if for (aq,...,a,—1) € Q=1 the stabilizer
n—1
Gal,...,an_1 = ﬂ Gaz
i=1

is transitive on Q \ {aq,...,ap-1}.



86 4. Permutation Groups

4.2.3 Let a € Q. Suppose that G acts transitively on Q. Then G is
2-fold transitive on € if and only if

G = Go U Gag Gy
for g€ G\ G, .
Proof. By 4.1.1 © can be identified with the set of cosets G,g, g € G. The
transitivity of G, on Q\ {a} implies, for Gog # G,

GougGa = G\ G,. O
From 4.2.3 together with 4.2.1 we obtain:
4.2.4  Fvery 2-fold transitive permutation group is primitive. O

Examples of n-fold transitive groups, resp. (n — 2)-fold transitive groups,
are the symmetric group S, and the alternating group A,. These groups
will be introduced in the next section. It should be mentioned that apart
from these two classes there are no n-transitive groups for n > 6.7

Here we only note:

4.2.5 Let G be an n-fold transitive permutation group on Q, [ > 3.
Suppose that G contains a reqular normal subgroup N. Then n < 4; more
precisely:

(a) Forn=2: N is an elementary Abelian p-group.

(b) Forn =3: N isan elementary Abelian 2-group, or N = C3 and
G = Ss.

(c) Forn=4: N =2 (CyxCy and G = Sy.

Proof. Let n > 2 and a € Q. Then G, is (n — 1)-fold transitive on Q\ {a}
and thus also (n — 1)-transitive on N# (4.1.4). This shows that for all
z,y € N# there exists g € G, such that 29 = y. Hence, every element of
N7 has the same order, and this order is a prime p (1.4.3). Now Cauchy’s

"This follows from the classification of the finite simple groups.
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Theorem implies that N is a p-group, and N is elementary Abelian since
Z(N)#1 (see 3.1.11 on page 61).

Let n > 3 and thus 3 < |N| = |Q]. If |[N| =3 then G = S3. Assume that
IN| > 4, and let 21, 72,23 be three different elements of N#. Since G, is
2-fold transitive on N# there exists g € G, such that

g

#{ =z and 2z

2 = :U3.
If p> 3 then z1 # 1:1_1; and for zy := :1:1_1 we get x99 = w9, a contradiction.
Thus, N is an elementary Abelian 2-group.

Let n > 4. Then || > 4 and as seen above N is an elementary Abelian
2-group of order at least 4. Let U = (x1) X (x2) be a subgroup of order 4
of N. Assume that U # N . Choose x3 = z1x9 and x4 € N \ U. Since G,
is 3-fold transitive on N# there exists g € G such that z{ = 21, 23 = 22
and z§ = x4, which contradicts

9 _ _ 9.9 _
xy = (x122) = xizy = 129 € UL

This shows that |Q2] =4, and n = 4 follows. O

4.3 The Symmetric Group

The symmetric group S, of degree n is the group of all permutations
of the set
Q= {1,...,n}.

Then S, has order n! and acts by definition n-fold transitively on 2. A
permutation z € S, is a cycle of length &k (or a k-cycle) if there exist k
different elements aq,...,ax € 2 such that

CV@'Z = 41, fOI"iZl,...,/{J—l, Ozk;Z:Oq,
and
BF = foral g€ Q\{ay,...,ax}.
We denote z by (ajas...ar). Then forg € S,

A cycle 2/ = (By---3,) is disjoint from z, if
{ﬁl?"')ﬁ?"} N {Oél,...,Oék} = .
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In this case zz’ = 2’z. It is evident that every permutation can be written
in a unique way as the product of pairwise disjoint and thus commuting
cycles:

(**) xr = (all o .. &lkl)(OQl o . a2k2) “ . (asl .. '&Sk's)'

The cycles (o1 ---ouk;) correspond to the orbits of (z) in its action on
Q0 and thus to a partition of 2. After rearranging the cycles according to
their lengths k1 > ko > -+ > ks, the tuple (ki,...,ks) is called the type
of . The cycles of length 1 describe the fixed points of z in . In the
representation (xx) they are usually omitted.

4.3.1  Two permutations of S, are conjugate if and only if they have the
same type.

Proof. According to (x) the conjugate of a k-cycle is a k-cycle. Hence,
conjugate elements have the same type. Conversely, let x be as in (%) and

v = (oo ady ) (ahy e agg,) e (0 - aly)

Then z and 2’ have the same type. Let a € S, satisfying a: aj; — ay;.
Then (x) implies 2% = 2/ O

The 2-cycles of S,, are called transpositions. For k > 2 every k-cycle
(a1 -+ - ) is the product of (k — 1) transpositions:

(1) = (aqae)(arasz) - (a1ag).

Thus, (#*) shows that every permutation of S,, can be written as a product
of transpositions ¢;:3
T = tito- - 1s.

In this representation of x the transpositions t; are by no means uniquely
determined — but in fact the number of factors (for a given element) is either
always even or always odd.? Thus the mapping

sgn: z +— (—1)°

81 being written as the “empty product.” Of course, for n > 2 also 1 = t?, t transpo-
sition.

9This property usually is proved in a beginner class in linear algebra, when determinants
are introduced.
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is well defined and is a homomorphism from S,, into the multiplicative
group {1,—1} (= C3) of order 2. The kernel of this homomorphism is the
alternating group A, of degree n; it consists of all even permutations
(the permutations in S, \ 4,, are called odd). For n > 2 A, is a normal
subgroup of index 2 in S,,. For example, a k-cycle is an even permutation,
if and only if k£ is odd.

4.3.2 A, is (n— 2)-transitive on Q (n > 3).

Proof. The tuple T} := (3,4,...,n) € Q("=2) can be mapped to any other
tuple 75 € Q=2 by a permutation z € S,,. Then also tz, t = (12), maps
T1 to Ty, and either z € A,, or txr € A,. O

4.3.3 A, is the commutator subgroup of Sy,.

Proof. Let K be the commutator subgroup of S,. Since S, = A4, =1=K
forn =1 we may assume that n > 2. Moreover, K < A,, since S, /A, =
Cy (1.5.2).

Let ¢ be a transposition of S,,. Then (t)K is a normal subgroup of S,, since
Sp/K is Abelian. By 4.3.1 the transpositions of S,, are conjugate, and,
as seen above, every element of S, is a product of transpositions. Hence
Sp=(t)K and K = A,. O

Notice that A, =1 for n =2 and A, = ((123)) = C3 for n = 3. In the
latter case
1 < A3 <853

is a chief series (and also a composition series) for S3 with cyclic chief
factors.”

Let n = 4. The elements of order 2 in S; are either transpositions or of
type (2,2). In the second case the elements are

to= (12)(34), t2 = (13)(24), t5 = (14)(23).

The set
N = {1,t1,t2,13}

0The group table of Ss is given on p. 3.
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is a subgroup of A4 isomorphic to Cy x C3, and N is a regular normal
subgroup of Sy. Let d = (123). Then A4 is the (internal) semidirect
product of (d) with N and

td =t3, td =11, td=t.
Hence
1< NS A <8

is a chief series of S; with Abelian chief factors, and
1 < (1)) < N< A <8

is a composition series with cyclic composition factors.

Later we will use the following description of Sy:

4.3.4 Let G be a group of order 24 that is not 3-closed. Then either
G=S, or G/Z(G) = Ay. M

Proof. G acts on
Q= Sy13G

by conjugation. Since G is not 3-closed Sylow’s Theorem gives || = 4.
Thus, there exists a homomorphism ¢: G — S; such that

Ker ¢ = SﬂQNg(S) =: N.
€

G/N is a subgroup of Sy and |N| a divisor of 2! = 6. If |N| € {3,6}, then
N and thus also G is 3-closed, a contradiction. The case N = 1 yields
G = Sy, and the case |N| =2 implies N = Z(G) and G/N = Ay. O

The subgroup of 5,, fixing n € ) is the symmetric group 5,1 acting on
{1,...,n—1}. In this sense we will regard S,,_1, resp. A,_1, as a subgroup
of S,. For example, S is the semidirect product of S3 with the regular
normal subgroup NV introduced above.

4.3.5 Theorem. A, is simple for n > 5.

"Tn this case either G 2 A4 x Cy or G =2 SLy(3), see 8.6.10 on p. 219.
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Proof. Let n =5. Then |A,| =60, and A, is not 5-closed since the number
of 5-cycles in Aj is larger than 4. Hence, 3.2.12 on page 68 shows that As
is simple.

Let n > 6 and N be a normal subgroup of A,, 1 # N # A,. By induction
on n we may assume that A,_; (the stabilizer of n € Q in A, ) is simple.
Moreover, A, is 4-transitive and primitive on Q (4.3.2 and 4.2.4). Thus,
4.2.1 and 4.2.2 imply that A,_; is a maximal subgroup and N is a transitive
normal subgroup of A,. Now the simplicity of A, 1 shows that N is a
regular normal subgroup, and the 4-transitivity of A, together with 4.2.5
gives n = 4. This contradicts n > 6. a

4.4 Imprimitive Groups and Wreath Products

Let G be a group and 2 a set on which G acts transitively and imprimitively.
Then there exists a set of imprimitivity A C Q such that 1 # |A| # |Q]
and

Y= {A% geG}

is a partition of Q. Fix a € A, and set U := G, and H := G, where Ga
is the stabilizer of A. Then

U< H <.

We now describe the action of G on ) by means of the action of G on X
and H on A.

By 4.1.1 the action of G on (2 is equivalent to the action of G on the right
cosets of U (in G) by right multiplication. Hence, we may assume that

Q= {Ug|geG}

Then
AV = {Uhge Q| h € H}.

Let S be a transversal of H in GG. For every x € G and s € S there exist
elements f,(s) € H and s; € S such that

st = f(8) Sz,

and these elements f,(s) are uniquely determined by z and s. Hence, for

Uhs € A%:
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(1) (Uhs)x =Uhfy(s)s,.

For z,y € G and s € S we obtain

fwy(s) Sxy = s(zy) = fo(s)szy = fu(s) fy(sx)(sx)y'
It follows that

(2)  fay(s) = fa(s) fy(sz), and
() (s2)y = Say-
Hence
s s, (s€8,xe@)
defines an action of G on S, which is equivalent to the action of G on .

Let R
H: = XH
S
be the direct product of |S| copies of H. We describe the elements of H as
functions from S in H
H={f|f:5~H}

where f € H is the “S-tuple” whose “s-th entry” is the element f (s) € H.
The multiplication is “componentwise”, i.e., (fg)(s) = f(s)g(s) for f,g €
H. The previously defined elements f,(s) € H now give an element

fo: s fu(s)

of H.
For z € G and f € H we define

(4) f*e H such that fE(s) == f(sp-1), s€S.

Since
(f:v)y(s) = fm(sy—l) = f(sy—lx—l) = f(s(xy)—l) = fwy(s)’

(4) defines an action of G on the group H. This action permutes the entries
of the S-tuple f according to the action of G on S: f(s) is the s,-th entry
of the S-tuple f7.

Let G x H Ee the semidirect product with respect to this action. For
(,f) e Gx H and Uhs € Q (he H, s € S) we set:
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(5)  (Uhs)®F) := Uhf(sz)se.

Then R
(z, f) (y,9) = (zy, fYg) for (=, f),(y,9) € Gx H,

and

(URs) @)@ = (URf(52)5:)%9) D URF(52)9(52y) 5y

Q) Uhf¥(s0y)9(50y) 52y = (Uhs)@5"9).

Thus, (5) defines an action of G x H on Q. We denote this action by p’ and
the action of G on 2 by p.

4.4.1  The mapping

n:G— Gx H with x> (z, f2°)
is a monomorphism and p=np'.

Proof. Evidently 7 is injective. For z,y € G

= (&, ), £,Y) = (xy, Y = (ey, (fof,® ™)
CUY 2y, ™) = (ay)".

Hence, 1 is a monomorphism.

For the proof of the second claim let x € G and Uhs € Q (h€ H, s € 5).
Then

~—

(Uhs)*” = Uhsx W Uhfs(8)Sg W Uhfz*(Sz)Sa

S (Uhs) @) = (R, O

The group G x Hisa special case of a wreath product, which we define now.

We start with a quadruple (H,G, A, 7), where H and G are groups, A is
a subgroup of G, and 7 a homomorphism from A in Aut H. We use the
notation

h® := h*, heH, acA.

Let S be a transversal of A in G. As above we define the |S|-fold direct
product
H:=XH={f|f:S—H}
S
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and, for every (z,s) € G x S, an element (f;,s;) € A x S satisfying

st = fz(s) s

As above, but with A in place of H, the equations (2) and (3) hold. In
particular s — s, defines an action of G on S, which is equivalent to the
action of G on the cosets Ag, g € G. For (z, f) € G x H let fre H be
defined by

(6)  f(s) = f(sp1)/etet), s €8,

where f;(s,-1) acts on H with respect to 7.

Because of

(f5)¥(s) = fx(Syfl)fy(Sy_l) _ (f(syflfl)fz(sy—lz—l))fy(sy—l)
2 F(S(yy-1) 7 Cen) = fru(s)

(6) defines an action of G on the group H. Let
KS = G X ﬁ
be the semidirect product with respect to this action. The index in Kg

indicates that this definition might depend on the choice of the transversal
S. But we show:

4.4.2 Let S and S be two transversals of Ain G. Then Kg = Kg.

Proof. For every s € S there exists a pair (bs,s) € A x S such that
(7) s =bss.

For (z,s) € G x S let (fy,5) € H x S such that

Since
S = bysw = by fo(5) 50 2 by fuls) b1 5,
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we obtain
(+) f2(3) = bs fals) b
It is evident that the mapping
B: X H—- X H
S S

defined by

8)  fP3) = f(s)"

is an isomorphism. Let

Y: Kg — Kg such that (z, f) — (z, f9).
Then ¢ is an isomorphism if and only if
(+) (f5)? = (f%)*, forall fe H, z€G.

Moreover
U@ D () D (sl

and

(F)*(3) = fﬁ(gxil)fm(gmfl) ®) f(sfl)bsflfm(éfl).

Thus, (+) follows from (). O
Result 4.4.2 shows that the semidirect product
K:=Gwx H

constructed from the quadruple (H,G,A,7) is (up to isomorphism) inde-
pendent of the choice of transversal. The group K is the twisted wreath
product of G with H (with respect to A < G and 7: A — AutH). If
A™ =1, then K is the wreath product of G with H.

Exercises

In the first three exercises GG is a transitive permutation group on the set 2.
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1. Let N be a normal subgroup of G and ¥ be the set of orbits of N on (2.
Then G acts transitively on ¥.12

2. (Witt, [101]) Let G be n-transitive on Q and X C Q, |X| > n, and let P be

a Sylow p-subgroup of (] G,. Then Ng(P) acts n-transitively on Cq(P).
a€eXY

3. Suppose that G is primitive on 2 and contains a transposition. Then G =
Sa.

In the following three exercises let G' be a Frobenius group with Frobenius comple-
ment H and Frobenius kernel K.

4. If H has even order, then Z(H) # 1.

5. Suppose that every coset of H in GG contains at least one element from K.
Then K is a subgroup of G.

6. If H is a maximal subgroup of G, then K is an elementary Abelian p-group.'?
7. Let p be a prime, G := S, and P € Syl, G. Determine Ng(P).

8 Let x = (1---n) € S,,. Then Cs, (z) = R x X, where R = (z) and
X 28, 0 (So:=1).

9. Let H K < Ss, H = ((123)(456)(78)) and K = ((38)). Determine the
orbits of H, K and (H,K) on {1,...,8}.

10.  Determine the class equation of A7.

In the following three exercises let G := S,, n > 3, and T be the conjugacy class
of transpositions of G.

11.  (a) |T|= % and Cg(d) 2 Cy x S,,_o for d € T.
(b)  o(ab) € {1,2,3} for all a,beT.
12.  Let D be a conjugacy class of involutions of G such that

o(ab) € {1,2,3} for all a,b € D.

Then D =T, or n = 6 and D = ((12)(34)(56))%, or n = 4 and D =
((12)(34))€.
13. Let a € Aut G such that T* =T. Then « is an inner automorphism of G.

14.  Let G be a group and di, ..., d,, involutions in G (m > 3) such that

(i) G={(dy,...,dn),

12The action of G on € induces an action of G on the set of all subsets of .
3For this exercise assume that K is a normal subgroup of G (see 4.1.6).
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15.

16.
17.

y 2 i >2
(i) O(dldﬂ)_{ 3 if|i—j=1"

(111) <dl, N ,dm> = Sm_i+2 for 2 S 1 S m.
Then for D :=d{ and M := (da,...,dy):

(a) |dM] =m, and M acts 2-transitively on d}! (by conjugation).
(b) a’ e M for all a,b e d) with a #b.
(c) D=dMu(DnM).
(d) Let acdM and b€ D. Then
M a=1>
Mab=1<{ Ma® if beDNM
Ma bedM\ {a}

(e) |G:M|=m+1,and d; acts as a transposition on {Mg| g € G}.

Let G be a group and dy,...,d,—1 (n >2) involutions in G such that

i) G={(d,...,dp—1) and
) [ 2 falls|i—j|>2
(11) O(dzd]> - { 3 falls |/L _.7’ =1

Then there exists an isomorphism ¢: G — Sy such that df is a transposi-
tion of S,,.

There exist two subgroups isomorphic to S5 in Sg that are not conjugate.

Aut S, =InnS, or n =6 and |AutS,/InnS,| = 2.
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Chapter 5

p-Groups and Nilpotent
Groups

As was mentioned in the introduction of Section 3.2, Sylow’s Theorem di-
rects attention to the p-subgroups of a finite group. In this chapter we
will present some basic facts about p-groups (and more generally nilpotent
groups), which will be used in later chapters.

In the second section we investigate p-groups that contain a cyclic maximal
subgroup.

5.1 Nilpotent Groups

A group G is nilpotent, if every subgroup of G is subnormal in G.! It is
evident that this property is equivalent to

U < Ng(U) for every subgroup U < G.

As a direct consequence of 1.2.8 on page 14 and Cauchy’s Theorem one
obtains:

5.1.1  Subgroups and homomorphic images of nilpotent groups are nilpo-
tent. Maximal subgroups of nilpotent groups are normal and of prime index.
O

!This definition applies only to finite groups. See the footnote on p. 102.

99
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5.1.2 Let G be a group and Z a subgroup of Z(G). Then G is nilpotent
if and only if G/Z is nilpotent.

Proof. One direction follows from 5.1.1. For the other direction let G/Z be
nilpotent and U < G. Then UZ/Z << G/Z and thus UZ << G (1.2.8 on
page 14). Since Z < Z(G) also U QUZ. Hence U I<4G. O

Result 3.1.10 on page 61 gives the most important class of nilpotent groups:
5.1.3 p-Groups are nilpotent. O

Recall that O,(G) denotes the largest normal p-subgroup of a group G
(3.2.2 on page 63), and G is p-closed if O,(G) is a Sylow p-subgroup of G.

5.1.4 Theorem. The following statements are equivalent:

(i) G is nilpotent.
(i)  For every p € m(G) G is p-closed.

(i) G= X O0,(G).
pen(G)

Proof. (i) = (ii): Let U := Ng(G)p), where p € n(G) and G, € Syl,G.
Then the Frattini argument yields

Ng(U) = UNn,w)(Gp) = U

since G, is a Sylow p-subgroup of U. The definition of nilpotency gives
U =G and thus G, < G.

(ii) = (iii): This follows from 1.6.5 on page 31.

(iii) = (1): Z(0p(G)) #1 for p € 7(G) by 3.1.11 on page 61. Hence also

Z(G) = X Z(0p(GQ)) # 1
pen(G)

(1.6.2 (a) on page 29). Let G := G/Z(G). Then 1.6.2 (c) implies

G
G= X 0,(G)= X 0,(G).
pen(G) pen(G)
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By induction on |G| we may assume that G is nilpotent. But then also G is
nilpotent (5.1.2). O

From 1.6.2 (a) and 3.1.11 on page 61 we obtain:

5.1.5 Let G be a nilpotent group and N # 1 a normal subgroup of G.
Then Z(G)NN # 1. O

This property characterizes nilpotent groups:

5.1.6  The following statements are equivalent:

(i) G is nilpotent.

(i)  Z(G/N) # 1 for every proper normal subgroup N < G.

(iii) [N,G] < N for every nontrivial normal subgroup N < G.

Proof. (i) = (ii): This follows from 5.1.5 since factor groups of nilpotent
groups are nilpotent.

(ii) = (iii): Let G # 1 and G := G/Z(G). Then Z(G) # 1. Every factor
group of G also satisfies (ii). Thus we may assume by induction on |G|
that either N = 1 or [N,G] < N. The first case gives N < Z(G) and
[N,G] =1 < N. In the second case [N,G] < N follows from 1.5.1 on page
24.

(iii) = (i): Let G # 1 and M be a minimal normal subgroup of G. Since
also [M,G] is a normal subgroup of G (1.5.5 on page 26) we get [M,G] =1
and thus

M < Z(G).

Let G := G/M and M < N < G. Assume first that [N,G] = N. Then
N =[N,G]M (1.5.1 on page 24) and

[N,G] = [[N,G],G].

Hence (iii) gives [N,G] = 1. But now N = M, which contradicts the choice
of N.

We have shown that also G satisfies (iii). Thus, by induction on |G| we may
assume that G is nilpotent. But then G is nilpotent (5.1.2). O

The following is a useful property of nilpotent groups:
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5.1.7 Let G be nilpotent and N a mazimal Abelian normal subgroup of
G. Then Cg(N)=N.

Proof. By way of contradiction we assume that N < Cg(IN) =: C. Then
C/N is a nontrivial normal subgroup of G/N. By 5.1.1 and 5.1.5

Z(G/N)n C/N # 1.

Let N < U < G such that U/N is a cyclic subgroup of Z(G/N)NC/N.
Then U is a normal subgroup, and U is Abelian (see 1.3.1 on page 16). This
contradicts the maximality of N. O

According to 5.1.6 (ii), resp. (iii), every nilpotent group G possesses a series
of subgroups

1l=24< 2 < < 21<24; < <Z2.1< Z:.=0G

where Z; < G and Z;/Z; 1 < Z(G/Z;_1) fori=1,...,c?

Conversely, 5.1.2 shows that every group having such a central series is
nilpotent.?

The length c of a shortest such central series of G is the (nilpotent) class of
G, denoted by ¢(G). For example, ¢(G) =1 if G # 1 is Abelian; ¢(G) < 2
if G/Z(G) is Abelian.

We conclude this section with two results about p-groups (of class 2) which
we will need later.

5.1.8 Let A and B be subgroups of the p-group G satisfying
[A,B] < An B and |[A,B] <p.

Then
|A: Ca(B)| = |B:Cp(A4)|.

2With 5.1.6 (ii) from the “bottom up” : Zi := Z(G), Z2/Z = Z(G/Z1),..., and
with 5.1.6 (iii) from the “top down”: G > [G,G] > [G,G,G] > ---.
3 An infinite group is defined to be nilpotent, if it possesses such a central series.
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Proof. By 1.5.5 on page 26 N := [A, B] is normal in (A, B). Hence, A/N
and B/N centralize each other in (A, B)/N. Moreover N < Z( (A, B))
since |N| <p (3.1.11 on page 61). This gives

Cp(A) = C5(AN) < B.

Let
|1B/Cp(A)| = p",

and bi,...,b, € B such that
B = Cp(A)(by,...,by).

A acts on Nb; by conjugation (i = 1,...,n). Let A; be the kernel of this
action. Then

From |Nb;| =|N| <p we get |A/A;| < p and thus with 1.6.4 on page 31
|A/Ca(B)| < p" = |B/Cp(A)|.
The same argument with the roles of A and B reversed also gives
|B/Cp(A)| < [4/Ca(B))|.

Hence equality holds. a

5.1.9 Let P be a p-group and A a mazimal Abelian subgroup of P. Sup-
pose that |P'| = p. Then

P:A| = [A/Z(P)] and |P/Z(P)| = |A/Z(P)P

In particular, all mazximal Abelian subgroups of P have the same order.

Proof. The maximality of A implies
Ca(P) = Z(P), Cp(A) = 4

and |P'| = p implies P’ < Z(P). Hence P’ < A. Thus, we can apply 5.1.8
with B = P. It follows that

A/Z(P)| = |P/A
and |P/Z(P)| = |P/A||A/2(P)| = |A/Z(P)*. 0
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Exercises
1. The dihedral group Ds,, is nilpotent, if and only if n is a power of 2.
Let P be a p-group.

2. Let My, M5 be two different maximal subgroups of P. Then P = MM,
and P/M1 ﬂMQ = Cp X Cp.

3. If P contains two different maximal subgroups that both are Abelian, then
P/Z(P) is Abelian.

4. Let Uy,...,U, be proper subgroups of P such that P =U;U---UU,. Then
r>p+ 1.

5. Let A be a maximal Abelian normal subgroup of P. If |A: Cs(x)| < p for
all x € P, then P’ < A.

6. Let |P:Cp(x)] <p? forall x € P. Then P’ is Abelian.

5.2 Nilpotent Normal Subgroups

Let G be a group and N a nilpotent normal subgroup of G. Then 5.1.4 (iii)
shows:
N = X Opy(N).
pET(N)

Since Op(INV) is characteristic in NNV it is normal in G. Hence
0,(N) < 0,(Q).
The product of all nilpotent normal subgroups of GG is a characteristic sub-

group of G it is called the Fitting subgroup of GG and denoted by F(G).*

As we have seen, F'(G) is contained in the product of the subgroups O,(G),
p € m(G). On the other hand, by 5.1.3 each of the normal subgroups O,(G)
is nilpotent and thus contained in F'(G). Thus:

5.2.1 (a) F(G) isthe largest nilpotent normal subgroup of G.

(b) F(G)= X 0O,(G). O
pem(G)
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For the following important property of the Fitting subgroup compare with
6.1.4 on page 123 and Section 6.5.

5.2.2 Let C:=Cg(F(Q)). Then
O,(C/C N F(Q)) =1

for all p € P.

Proof. Let P be the inverse image of O,(C/C N F(G)) in C. Then P is
normal in G (1.3.2 on page 17), and P is nilpotent since C N F(G) < Z(C)
(5.1.2). Hence P < F(G)NC and O,(C/CNF(G)) =1. O

The intersection of all maximal subgroups of GG is a characteristic subgroup
of G; it is called the Frattini subgroup of G and denoted by ®(G).> If
G =1 then ®(G) = 1 since G does not possess maximal subgroups. The
crucial property of the Frattini subgroup is:

5.2.3 Let H be a subgroup of G such that G = H®(G). Then G = H.

Proof. If G # H, then there exists a maximal subgroup of G containing H
and ®(G). This contradicts G = H®(G). O

5.2.4 Let N be a normal subgroup of G. Then ®(G)N/N < ®(G/N).

Proof. The maximal subgroups of G/N are exactly the maximal subgroups
of G that contain N. O

An application of the Frattini argument gives:

5.2.5 (a) ®(G) is nilpotent.

(b) If G/®(G) is nilpotent, then G is nilpotent.

®See [45].
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Proof. (a) By 5.1.4 (ii) it suffices to show that every Sylow p-subgroup
P of ®(G) is normal in ®(G). The Frattini argument 3.2.7 yields G =
Ng(P)®(G) and thus G = Ng(P) by 5.2.3.

(b) By an argument similar to that of (a), we show that every Sylow p-
subgroup P of G is normal in G. By 3.2.5 on page 65 P®(G)/®(G) is
a Sylow p-subgroup of the nilpotent group G/®(G) and thus normal in
G/®(G) (5.1.4 (ii)). Hence N := P®(G) is normal in G. Now P € Syl, G
implies

G *Z" Ng(P)N = Ng(P)P®(G) = Ng(P)®(G),

and again G = Ng(P). O

The last results of this section deal with the Frattini subgroup of a p-group.
The first one is an observation that follows from 2.1.2:

5.2.6 Let P be an elementary Abelian p-group. Then ®(P) = 1. O

5.2.7 Let P be a p-group.

(a) P/®(P) is elementary Abelian.

(b) If |P/®(P)| = p"™, then there exist x1,...,x, € P such that
P = <$1,...,$n>.

Proof. (a) In a nilpotent group every maximal subgroup is normal of index
p. Hence (a) follows from 1.6.4 on page 31.

(b) Because of (a) and 2.1.8 (a) |P/®(P)| = p™ is generated by n elements
z1®(P),..., 2, ®(P), z; € P. Hence P = (z1,...,2y)P(P) = (1,...,2y)
by 5.2.3. 0

5.2.8 Let P be a p-group. Then ®(P) is the smallest normal subgroup
of P that has an elementary Abelian factor group.

Proof. Let N < P such that P/N is elementary Abelian. By 5.2.4
®(P)N/N < ®(P/N), so 5.2.6 shows that ®(P) < N. The result now
follows from 5.2.7 (a). O
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A p-group P is special if P is non-Abelian and
P' = ®(P) = Z(P) = Q(Z(P)).

If, in addition, Z(P) is cyclic, then P is extraspecial.

From 5.1.9 we obtain:

5.2.9 Let P be an extraspecial group and A a mazximal Abelian subgroup
of order p*. Then |P|=p?"~1. O

It should be pointed out that an extraspecial group is a central product of
non-Abelian subgroups of order p3.%

Exercises

Let G be a group.

1. F(G/®(G)) =F(G)/®(G).

2. If F(G) is a p-group, then F(G/F(QG)) is a p’-group.

3. Suppose that G is nilpotent. Then the following statements are equivalent:
(i) @G is cyclic.
(i) G/G' is cyclic.
(iii)  Every Sylow p-subgroup of G is cyclic.

4. (@ is nilpotent if and only if every maximal subgroup of G is normal in G.

5. G is nilpotent if and only if for every noncyclic subgroup U < G:

(V) £ U for all z €.

6. NIG = &(N)<dG).

7. Let p € m(G) such that O,(G) =1, and let N be a normal subgroup of G
such that G/N is a p-group. Then ®(G) = ®(N).

8. Let N be a normal subgroup of G such that G/N is nilpotent. Then there
exists a nilpotent subgroup U of G such that G = NU.

9. Let P be a p-group. If p =2, then
O(P) = (2| x € G).

Give a counterexample for p # 2.

6See Exercise 4 on p. 118.
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5.3 p-Groups with Cyclic Maximal Subgroups

In this section we determine all the p-groups that contain a cyclic maximal
subgroup.

Let P be a p-group and H a maximal subgroup of P. By 3.1.10 on page 61
H is normal in P and P/H = (). We first deal with the Abelian case:

5.3.1 Let P be Abelian and H a cyclic maximal subgroup of P. Then
either P is cyclic or P =H x C, C = C).

Proof. We may assume that P is not cyclic. Then H is a cyclic subgroup of
maximal order in P. Hence, 2.1.1 on page 43 gives P = H xC,C = C,. O

We will treat separately the two cases

e H has a complement A in P.

e H has no complement in P.

In the first case P is the semidirect product of H with A and, as we have
seen already, A = C). If in addition also H is cyclic, then the multiplication
in P is completely determined by the action of A on H. Thus:

5.3.2 Let P be a non-Abelian p-group and H = (h) a cyclic mazximal
subgroup of P, |H| = p™. Suppose that H has a complement A = (a) in P.
Then one of the following holds:

1

(@) p#2 and h® = K'P""" (if a € A is chosen suitably).
(b) p=2 and h* =h~1,
(¢) p=2,n>3 and h® = h~1+2"",

(d) p=2,n>3 and h* = h*2"",

The four cases above describe four different isomorphism types of P.
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Proof. The statements (a)—(d) follow from 2.2.6 on page 52. It remains to
show that they describe different isomorphism types. This is only a problem
for the cases (b), (c), and (d). In all these cases the involution

n—1
2 = h?

is in Z(P). Moreover for i € N

{ h™'2" in case (c)

hiz'  in case (d)

()" =

This gives
(2) (b)
Z(P) = (z) in case (c)

(h?) (d)

Hence it suffices to investigate the cases (b) and (c). In case (b) every
element in P \ H is an involution, while in case (¢) ha € P\ H is an
element of order 4. O

In case (b) P is a dihedral group (see 1.6.9 on page 34). In case (c) P is
said to be a semidihedral group.

We now turn to the nonsemidirect case and introduce the quaternion groups
that arise here.

Let 3<neN,
H = (h1) = Con-1 and A = (a1) = C4.
Then A acts on H according to
hgt = hit

In particular, (a?) acts trivially on H. Let P be the semidirect product

AH with respect to this action. Then
(ad) (h]") (2 Cax Ch)
is a subgroup of Z(P). Set

n—2
N = (a2h?" 7).
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The group P/N (and every group isomorphic to P/N) is called a quater-
nion group of order 2" and is denoted by Qa».” Let

a =aN and h = hiN.

Then
Qo = (a,h), and
o(h) = 2n_1, o(a) = 4, h* = h—17 h2”_2 — 42

These relations determine the multiplication table of (QQan, i.e., all quaternion
groups of a given order are isomorphic.

The quaternion group of order 8 can be found as a subgroup of GL(2,C),
the group of all invertible 2 x 2-matrices over the field C of complex numbers,
in the following way: Let

i 0 0 1
h_<0 —i) and a—(_l O)'

-1 0

2 _ 2 _
Thenh-a-( 0 _1

), and the subgroup (h,a) in GL(2,C) is a
quaternion group.

The basic properties of a quaternion group @ := Qon are:

e (h) is a normal subgroup of index 2 in Q.

o 22=1h%"" forevery z € Q\ (h).

. 2(Q) = (12,

e Z(Q) is the unique subgroup of order 2 in Q.

e Every subgroup of @) is either a quaternion group or cyclic.

e If @ has order 8, then every subgroup is normal in Q).

We note:

5.3.3 AutQg = 5,.

"For n > 2 Qun is also said to be a generalized quaternion group.
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Proof. A := Aut Qg acts on the set ) of maximal subgroups of (g, and
2| = 3. Hence, there exists a homomorphism

Q: A— 53.
Let z,y be elements of order 4 in Qg such that y & (x). Then

Q= {<CC>, <y>7 <5Uy>}

and

o r _ ,—1 2 2
¥ =2, Y=y, 7=y

These relations show that A contains an element that interchanges x and y.
Thus Im ¢ contains all the transpositions of Ss, i.e.,

Im ¢ = Ss.

We have
N :=InnQs = Qs/Z(Qs) = Cy x Co

and N < Ker ¢. We first show:

(") N = Ker ¢.

Let a € Ker ¢. Since z¥ = 27! we may assume that 2% = z. If y? =y

then a = 1, and if y* = y~! then a is the inner inner automorphism induced
by x. This shows ().

Now A/N = S3 and thus |A| = 24. A subgroup of order 3 of Im ¢ is
transitive on 2, and thus on N#. This gives Z(A) = 1, and A is not
3-closed. Hence 4.3.4 on page 90 yields the conclusion. a

To prove that only quaternion groups arise in the nonsemidirect case we
need the following lemma:

5.3.4 Let x,y be elements of the p-group P, and let
[z,y] € QZ(P)).

(a) If p# 2 then (xy)P? = xPyP.

(b) If p=2 then (xy)? = 2%y*[w,y] and (zy)' = a'y",
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Proof. Let z := [z,y]. Then z¥ = zz and z¥ = z2' for i > 1. The
hypothesis implies 2”7 =1 and thus

(2P)Y = (2¥)P = aPzP = 2P,
Assume p = 2. Then
(zy)* = ayzy = ay’alz,y] = 2%z,

and (zy)* = 22y%222y%2 = 2y*.
Assume p # 2. Then

(zy™ )P = (zy ") (xyy ) (xyPy™2) - (ayP"y™P)
= xxza?-oxPlyTP

Since

(a) follows. O
As a corollary we have:

5.3.5 Let P be a p-group and p # 2. Suppose that P/Z(P) is Abelian.®
Then
QP) = {zxeP|a? = 1}.

Proof. Let x,y € P such that 2P = y? = 1. Because P/Z(P) is Abelian,
the element z := [x,y] is contained in Z(P). Hence

1 = (a2P)! = (a¥)P = aP2P = 2P

and thus z € Q(Z(P)) since ¥ = xz. Now the result follows from 5.3.4 (a).
(]

Let P be a p-group with a cyclic maximal subgroup H, which does not have
a complement in P. Then 1 # 2P € H for every z € P\ H, and Q(H) is
the unique subgroup of order p in P.

8That is, c¢(P) < 2.
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5.3.6 Let P be a non-Abelian p-group with a cyclic mazximal subgroup H.
Suppose that

(%) 1 # 2P € H forall x € P\ H.

Then P 1is a quaternion group; in particular p = 2.

Proof. Let H = (h), o(h) = p", and z:= h*" . Then

Choose = € P\ H such that o(z) is minimal. Since P is not cyclic we get
(xP) < (hP). Let hg € H such that

P = hop.

The case p # 2 leads to a contradiction: Replacing x by a suitable power
of z one gets from 2.2.6 (a) on page 52

n—1
ho® = ho't?

and thus [hy', 2] € Q(Z(P)). Now 5.3.4 gives (hg'x)” = hyPaP = 1 which
contradicts hy 'z € P\ H.

Let p = 2. According to 2.2.6 we have to discuss the following cases:
(b) h*=h"1 e, [h,x]=h"2
(c) m>3and h® =h"lz ie., [h,2] =h"22.

(d) n>3 and h* = hz, ie., [hz] =2z

In case (d) we derive a contradiction. Namely, in this case for every power
y of h

ly, z] € (2).
5.3.4 (b) gives for y := hy*

(ho_lx)2 = hy?2’z = 2

and thus o(hy'z) = 4. The minimal choice of o(z) yields o(z) = 4 and
thus z2 = z. It follows that ho? = 1. On the other hand (h?)* = h22% = h?
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and Cy(x) = (h?). If hy € Cy(z) then o(hy'z) = 2, which contradicts
hy'z € P\ H. Hence hg € H\ (h?) and
H = (hy) = Cy,
which contradicts n > 3.
In the cases (b) and (c)
x? _ ($2)x — (hg)x — ha2 — .T_Q

and thus also o(x) =4, i.e.,

Case (c) gives
(hx)? = hzhx = ha ‘hxz® = 2° = 1,

which contradicts hx € P\ H.

Hence we are in case (b), and 22 = z shows that P is quaternion group of
order 2"t O

5.3.7 Theorem. Let P be a p-group containing a unique subgroup of
order p. Then either P is cyclic, or p =2 and P is a quaternion group.

Proof. By 2.1.7 on page 46 we may assume that P is not Abelian. Moreover,
since also every subgroup U of P with 1 # U # P contains a unique
subgroup of order p we may assume by induction on |P| that U is cyclic, or
p = 2 and U is a quaternion group. Let H be a maximal Abelian normal
subgroup of P. Then H is cyclic and

Cp(H) = H

(5.1.7). Hence, we may regard A := P/H as a subgroup of Aut H (3.1.9
on page 60). Let Q/H, H < @ < P, be a subgroup of order p in A. Then
@ is non-Abelian and

1#a2P e H forall ze€eQ\H

since H contains the only subgroup of order p in P. Thus, p =2 and @ is
a quaternion group (5.3.6). In particular

he — h—l
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for every a € Q\ H. Therefore the 2-group A contains only one subgroup of
order 2. By 2.2.6 (¢) h®" # h™! for all o € Aut H. It follows that |A| = 2
and Q) = P. O

As a corollary we have:

5.3.8  Suppose that P is a p-group all of whose Abelian subgroups are
cyclic. Then P is cyclic or a quaternion group.

Proof. Let U < P such that |U| = p. Because Z(P)U is Abelian and thus
cyclic, U is the unique subgroup of order p in Z(P)U and thus U < Z(P)
since Z(P) # 1. Hence U is also unique in P, and the claim follows from
5.3.7. a

In the following we will describe the non-Abelian p-subgroups of order p3.?

Suppose that P contains an element h of order p?. Then H := (h) is a
cyclic maximal subgroup of P. This case was treated in 5.3.2 and 5.3.6:

If p # 2, then there exists a € P\ H such that o(a) = p and h® = AP,
If p =2, then P is a dihedral or quaternion group of order 8.

Suppose that P does not contain any element of order p?; i.e.,
") xP =1 for all x € P.

Then P is not isomorphic to one of the groups just considered. Since P is
Abelian for p =2 (Exercise 8 on page 10) we also have

(") p# 2

We now show that (up to isomorphism) P is uniquely determined by (') and
)

Let H be a subgroup of order p? in P and a € P\ H. Then P = (a)H a
semidirect product with

(1) H=C(C, xC, and (a) = C,

(5.3.1). By 3.1.11 (a) on page 61 there exists 1 # z € H such that z* = z.
Since P is non-Abelian we get h® # h for h € H\ (z), and [h,a] € (z) since

9These and other small groups were first determined by Holder [69].
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P/(z) is Abelian (5.3.1). After replacing z by a suitable power, we see that
the action of a on H is given by

(2) H = (z) x (h), 2% =2z h* = zh.

Hence (1) and (2) determine the isomorphism type of P.

It should be pointed out that the dihedral group of order 8 is also a semidirect
product (a)H satisfying (1) and (2).

We conclude this section with two results that will be needed in Chapter 12.

5.3.9 Let P be a p-group all of whose Abelian normal subgroups are cyclic.
Then P is cyclic, or p=2 and P is a quaternion group or a dihedral group
of order > 8 or a semidihedral group.

Proof. As in the proof of 5.3.7 let H be a maximal Abelian normal subgroup
of P. Then Cp(H) = H and by our hypothesis H is cyclic. We may assume
that H # P. Then

(1) H + QH) = QZ(P)) N H

and P/H is Abelian. Hence, every subgroup containing H is normal in P.
Let X be the maximal subgroup of H. We show:

(') Let a € P\ H such that a? € H. Then 2% = x~! for all z € X; in
particular p = 2.

Assume that (') does not hold. Then
(2) |H| > 2% if p=2,

and H(a) is not a quaternion group. Thus, we may choose a such that
o(a) = p. Since a induces a nontrivial automorphism on H the result 2.2.6
on page 52 resp. 5.3.1 shows that

[H,a] = Q(H) and [X,a] = 1.

Assume h € H\ X and o(ha) = p. Then

o(h) = o(a™(ah)) 5%4{ A
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which contradicts (1), resp. (2). Hence, Q(H (a)) is contained in the non-
cyclic Abelian group X(a). Therefore

Cp x Cp = Q(H(a)) char H(a) 9 P,

which contradicts the hypothesis. Thus (') is proved.

In 2.2.6 (b) Aut H has been described. It follows from there and (') that
|P/H| = 2. Now 5.3.2 gives the assertion; notice that in the case P = Dg
there exists a noncyclic Abelian normal subgroup in P. O

5.3.10 Let P be a 2-group and t an involution of P such that
Cp(t) ~ (9 x O,

Then P is a dihedral or semidihedral group.™©

Proof. Let H be a maximal Abelian normal subgroup of P. By 5.1.7
(1) |P/H|<|AutH|.

Because of 5.3.9 we may assume that H is not cyclic. Then H contains a
subgroup isomorphic to Co x Cy (2.1.7).

Assume first that t € H. Then H < Cp(t) and thus H = Cy x Cy and by
(1) |P/H| < 2. The case P = H gives P = Dy, and the case |P| =8 gives
P = Dg.l!

Assume now that t ¢ H. Then

(2) Oy = CH(t) = Z.

The set
K = {[z,t]| x € H}

is a subgroup of H since H is Abelian. For z,y € H

[x,t] = [y,t] <= xZ = yZ.

10Conversely, dihedral and semidihedral groups have this property.
Since otherwise P = Qg but Qs contains only one involution.
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Hence
|H : K| = 2.
Moreover
[z,t]! = (z7tet)t = to e = [z,¢] 7,
and thus

(3) kl=k7! forall k<€ K.

In particular, the involutions of K are contained in Cp(t). Hence, by (2)
Z is the unique subgroup of order 2 in K, and K is cyclic (2.1.7). Since
H is noncyclic there exists an involution y € H \ K. Then also [y,t] is an
involution and thus

y' = yz with (z) = Z
In the case |H| =4, (1) yields P = (y,t) = Ds.
In the case |H| > 4, we have |K| > 4, and there exists k € K such that
o(k) = 4. Tt follows that k? = z and

B2 = ke

This implies
(yk)" = y'k" = yzkz = yk,
which contradicts (2) since o(yk) = 4. O

Exercises

1.  Determine Q(P) for all p-groups P of order p3.

2. Let A, B be two non-Abelian groups of order p3, Z(A) = (a) and Z(B) =
(b), and let P := (A x B)/{ab). Then P is an extraspecial p-group.

3. Let P be an extraspecial p-group of order p3. Then

InnP = {a € Aut P| (zZ(P))* = xzZ(P) for all z € P}.

4.  Every extraspecial p-group is a central product of extraspecial p-groups of
order p3.

5. Let P be a p-group and Z2(P’) be the inverse image of Z(P'/Z(P’)) in P'.
Then P’ is cyclic if and only if Zy(P’) is cyclic.
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6. In the group GL2(3) of all invertible matrices over F3 let

() ()

Then P = Qs and P < GLy(3).
7. AutQon is a 2-group if and only if n > 4.
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Chapter 6

Normal and Subnormal
Structure

6.1 Solvable Groups

A group G is solvable,! if
U’ # U for all subgroups 1 # U < G.

Abelian and nilpotent groups are examples of solvable groups (5.1.1 on page
99). Thus, p-groups are solvable.

Let G be a dihedral group. Then G has a cyclic normal subgroup N of
index 2 (1.6.9 on page 34). Hence, U’' < N for every subgroup U < G, and
U' =1 if U < N. This shows that dihedral groups are solvable.

Further examples of solvable groups are the symmetric groups S3 and Sjy.
For S3 this follows from the above since S3 is a dihedral group. For S; a
similar argument as for the dihedral groups, using the chief series of 54 given
in Section 4.3, yields the desired conclusion.

Groups containing a non-Abelian simple subgroup E cannot be solvable
since E = E’; in particular, S, is not solvable for n > 5(4.3.5 on page 90).

By a classical Theorem of Burnside every group of order p®¢® (¢,p € P) is
solvable; we will prove this theorem in Section 10.2.

'For infinite groups solvability is defined differently; see the footnote on p. 123.
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One of the most famous theorems in group theory, the theorem of Feit-
Thompson [43], states that every group of odd order is solvable.?

6.1.1  Subgroups and homomorphic images of solvable groups are solvable.

Proof. For subgroups this is clear by the definition of solvability. Let ¢ be a
homomorphism of the solvable group G. Let 1 #V < G¥,and let U < G
be of minimal order such that U¥ = V. By 1.5.1 on page 24

U")? = V'

Since U’ < U the minimality of U gives V' < V. O

6.1.2 A group G is solvable if and only if there exists a normal subgroup

N of G such that N and G/N are solvable.

Proof. One implication follows from 6.1.1. Let N be a normal subgroup of
G such that N and G/N are solvable, and let 1 # U < G. If U < N, then
U’ < U by the solvability of N. If U £ N, then V := UN/N is a nontrivial
subgroup of the solvable group G/N and

U'N/N 2"V <V = UN/N.

Hence also in this case U’ < U. O

6.1.3  Fvery minimal normal subgroup N of a solvable group G is an
elementary Abelian p-group.

Proof. 1 and N are the only characteristic subgroups of N (1.3.2 on page
17). Hence N' =1, |x(N)| =1 (2.1.6 on page 46) and Q(N) = N. O

Result 6.1.3 shows that for a nontrivial solvable group G there exists p €
7(G) such that O,(G) # 1. Moreover, since also
G1 = Cg(F(G))/Ca(F(G)) N F(G)

is solvable (6.1.1), we get G1 =1 by 5.2.2 on page 105. Thus (compare also
with 6.5.8 on page 144) we have:

2See also [3].
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6.1.4 Let G be a solvable group. Then Cq(F(G)) < F(G). O

In a group G the series
Gl .— G/ 2 G2 .— (Gl)/ 2 Z Gz — (Gi—l)/ Z

is the commutator series of GG; notice that all subgroups in this series are
characteristic in G.

6.1.5 Theorem. For a group G the following statements are equivalent:

(i) G is solvable.
(ii)  There exists | € N such that G' =1.3
(iii) G possesses a normal series all of whose factors are Abelian.

(iv) G possesses a composition series all of whose factors have prime
order.

Proof. The implication (i) = (ii) follows directly from the definition of
solvability, and the implication (ii) = (iii) is trivial. Assume (iii). Then we
can extend this series to a composition series of G all of whose factors are
of prime order? (see Section 1.8).

(iv) = (i): Let (A;)i=0,...« be the composition series given in (iv). Then
N := A,_; is a normal subgroup of G with cyclic factor group G/N. Since
(Ai)i=0,...a—1 1s a composition series of N we may assume by induction on
|G| that N is solvable. Now (i) follows from 6.1.2. O

As in Section 5.1, where we considered nilpotent normal subgroups of arbi-
trary finite groups, we now investigate solvable normal subgroups.

6.1.6 Let A and B be two solvable normal subgroups of the group G.
Then the product AB is also a solvable normal subgroup of G.

3 An infinite group G is defined to be solvable if G satisfies this property.
“By the way, also to a chief series all of whose factors are elementary Abelian; compare
with 6.1.3.
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Proof. Since AB/A = A/AN B the result follows from 6.1.1 and 6.1.2. O

Result 6.1.6 shows that the product

S(G) = Al;[G A
A solvable

is a (characteristic) solvable subgroup of G. Hence S(G) is the largest
solvable normal subgroup of G. In particular, the direct product of solvable
groups is solvable.

Exercises

Let G be a group.

1.  Let G be solvable. Then there exists a normal maximal subgroup in G.
2. Determine the commutator series of Sy.
3. G is solvable if one of the following holds:
(@) |Gl=p"q (p,q€P).
() |Gl =par (p,q,r€P).
4.  Determine all nonsolvable groups of order < 100.

5. Let G be solvable. Suppose that all Sylow subgroups of G are cyclic. Then
G’ is Abelian.

6. Let G be solvable and ®(G) = 1. If G contains exactly one minimal normal
subgroup N, then N = F(G).

7. Suppose that every nontrivial homomorphic image of G' contains a nontrivial
cyclic normal subgroup (such a group G is super-solvable). Then G/F(G)
is Abelian.

8.  (Carter, [36]) Let G be solvable. Then G contains exactly one conjugacy
class of nilpotent subgroups A satisfying Ng(4) = A.°

9. Let G be solvable and p € 7(G). Suppose that Ng(P)/Cq(P) is a p-group
for every p-subgroup P of G. Then G contains a normal p’-subgroup N
such that G/N is a p-group. (Compare with 7.2.4 on page 170 and Exercise
6 on page 172.)

10.  Suppose that every maximal subgroup of GG is nilpotent. Then G is solvable.

®Such a subgroup A is a Carter subgroup of G.
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11. Let A and B be Abelian subgroups of G such that G = AB. Then G is
solvable. (Do not use Exercise 5 on page 27.)

6.2 The Theorem of Schur-Zassenhaus

Let G be a group and K a normal subgroup of G such that
(K1, 1G/K]) = 1.

For Abelian K we have proved in 3.3.1 on page 73 that K has a complement
in G and that all such complements are conjugate in G. The next theorem
generalizes this result.

6.2.1 Theorem of Schur-Zassenhaus. Let G a group and K a normal

subgroup of G such that (|K|,|G/K|) = 1. Then K has a complement in
G. If in addition K or G/K is solvable, then all such complements are
conjugate in G.5

Proof. Let U <G and N < G. Then
UK/K 2U/UNK and (G/N)/(KN/N) = G/KN.

Hence, UNK is a normal subgroup of U such that ([UNK]|,|U/UNK]|) =1,
and K N/N is a normal subgroup of G/N such that (|[KN/N|,|G/KN|) =
1. Thus, the hypothesis is inherited by subgroups and factor groups of G.
If in addition K or G/K is solvable, then by 6.1.1 also this property is
inherited.

We now prove the existence of a complement by induction on |G|. Hence,
we may assume that in all groups of order less than |G| that satisfy the
hypothesis, such complements exist. Moreover, we can assume that 1 #
K <G.

Let p € m(K), P € Syl, K and

U := Ng(P).

STf H is such a complement, then the factorization G = K H shows that all complements
are already conjugate under K.
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First assume that U # G. Then by induction U N K has a complement H
in U. The Frattini argument yields

G =KU = K(UN K)H = KH.

Hence H is also a complement of K in G since HNK =HN(UNK) = 1.
Assume now that U = G. Then P and thus also

3.1.11
N = Z(P) # 1

is a normal subgroup of G (1.3.2 on page 17). Let G = G/N. By induction
there exists N <V < G such that V is a complement of K in G. Then

VNK=N and G = KV.

Hence, a complement of N in V is also a complement of K in G. If V # G,
then by induction such a complement exists. If V = G, then K =1 and K
is Abelian. Now 3.3.1 on page 73 gives the desired complement.

Using the additional hypothesis that K or G/K is solvable we now show,
again by induction on |G|, that all complements are conjugate in G. Let
H and H; be two complements of K in GG, and let N be a minimal normal

subgroup of G that is contained in K. We set G := G/N. Then H and H;
are complements of K in G, and by induction there exists ¢ € G such that

HN = (H;N)? = H\“N.

Thus, H and HY are complements of Nin HN. If N # K ,then HN # G,
and by induction the complements H and H1Y9 are conjugate in HN. Hence
H and H; are conjugate in G.

Assume that N = K. If K is solvable, then N is a solvable minimal normal
subgroup and thus Abelian (6.1.3 on page 122). Now the conclusion follows
from 3.3.1 on page 73.

Assume that K is not solvable; i.e., G = G/K is solvable. Then there exists
a normal subgroup Ain G such that K < A < G and @/Z is a nontrivial
p-group (6.1.5 on page 123). The Dedekind identity shows that H N A and
HyN A are complements of K in A, and by induction they are conjugate in
A. Thus we may assume (after suitable conjugation)

HﬂA:HlﬂAZ:DSI<H,H1>
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Since H/D = G/A = H1/D there exist P € Syl, H and P € Syl, H; such
that
H = DP and H; = DP,.

Moreover, (|K|,|H|) = 1 implies that P and P; are Sylow p-subgroups
of Ng(D). Hence by Sylow’s Theorem there exists g € Ng(D) such that
P9 =P, and H19 = DIP,9 = DP = H follows. O

The additional solvability hypothesis in the theorem of Schur-Zassenhaus is
not really a loss of generality. Since |K| and |G/K| are coprime at least
one of the groups K and G/K has odd order. But then the theorem of
Feit-Thompson shows that one of these groups is solvable.

Result 6.2.1 will be used in Section 6.4. Next we give a corollary, which will
be of importance for the discussion in Chapter 8.

6.2.2 Let G be a group acting on the set 2, and let K be a normal
subgroup of G. Suppose that

1) (K[ IG/K]) =1,
(2) K or G/K is solvable, and

(3) K acts transitively on Q.
Then for every complement H of K in G:

(a) Cq(H)# @, and

(b) Ck(H) acts transitively on Cqo(H).

Proof. (a) Let B € Q. By (3) || is a divisor of |K| (3.1.5 on page 58), and
G = KGp (Frattini argument) implies G/K = Gg/K N Gg. The theorem
of Schur-Zassenhaus, applied to K N Gg and Gg, gives a complement H;
of K NGpg in Gg. Then H; is also a complement of K in G such that
B € Cq(H1). Now (a) follows since, according to Schur-Zassenhaus, all
complements of K in GG are conjugate to Hj.

(b) Let a,3 € Cq(H) and k € K such thata® = 3. Then H and H* are
two complements of K NGy in Gg. Again by Schur-Zassenhaus they are
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conjugate under Gz and thus even under K N Gg. Let k' € K N Gp such
that H** = H. Then o** = 3 and

kk',H] < HN K = 1,

ie., kK ECK(H). O

If in 6.2.2 the complement H is a p-group (and this is the case in many
applications), then (a) is a consequence of 3.1.7 on page 59 since (|H]|,|Q2|) =
1, and all complements are conjugate by Sylow’s Theorem.

Exercises

1. Prove that the complements in the theorem of Schur-Zassenhaus are conju-
gate using the following hypothesis:

Aut E/Inn E is solvable for every simple group E. 7
Let G be a group, pe P, 1 CP and 7’ =P\ 7.
2.  If G/®(G) contains a nontrivial normal subgroup whose order is not divisible

by p, then so does G.

3. Let A be a nilpotent m-subgroup of G and ¢ € 7’. Let /lx(A) be the set of
A-invariant g-subgroups X < G and 5 (A) the set of maximal elements of
Wx(A) (with respect to inclusion). Suppose that

x  On(Cq(A) N Ng(Q)) acts transitively on M}G(Q)(A) for all @ €
Na(A).
Then the following hold:

(a)  Every nilpotent m-subgroup B of G containing A satisfies * in place
of A.

(b)  W&(B) CW5(A), where B is as in (a).

6.3 Radical and Residue

In this section we present some of the arguments of Section 6.1 in a more
general context. This allows us then to define further characteristic sub-
groups. In the following let C be always a class of groups that contains the

"This is Schreier’s conjecture, which up to now only can be verified using the classifi-
cation of the finite simple groups.
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trivial group and with a given group also all its isomorphic images. For any
group G

OFG) = (N A and Ox(G):= [] A4
A<QG AQG
G/AeK Aek

are characteristic subgroups of G. OX(G) is the K-residue and Oy (G)
the KC-radical of G.

In general neither Ox(G) nor G/ON(G) is in K. For example, if K is
the class of all cyclic groups, then OF(G) = 1 and Ox(G) = G for every
Abelian group G (2.1.3 on page 45). On the other hand, if Ox(G) € K
then Ox(G) is the largest normal subgroup of G contained in K. Similarly,
if G/O(G) € K, then OX(Q) is the smallest normal subgroup of G with
factor group in K.

In this section we are interested in the classes:
e A of all Abelian groups,
e N of all nilpotent groups,
e S of all solvable groups,
e P of all p-groups (p € P),
e II of all w-groups (w C P).
Here G is a m-group if 7(G) C 7w CP.
Using the notation introduced earlier we get
ON(G) = F(G), Os(G) = 5(G), Op(G) = 0,(G)

and
oA(@) = G
Let
Ox(G) == Op(G) and O7(G) := O'(G).

Then for 7/ := P\ 7 also O (G) and O™ (G) are defined. In the case
7 = {p} we write p, resp. p/, in place of 7, resp. 7’; this gives the particu-
larly important subgroups

0,(G), OP(@), and Oy (G), OP(QG).
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If G is a quaternion group of order 8, then O 4(G) = G and thus O4(G) € A.
For all the other classes mentioned above

Ox(G) € K.

For K =N, S, II this assertion follows from 5.2.1, 6.1.6, and 1.1.6, respec-
tively. In particular O,(G) resp. O, (G) is the largest normal p-subgroup
resp. p’-subgroup of G.

6.3.1 Let K € {N,S,11}. Then for every group G
Ok(G) = (A] ALQ G, AcK);

in particular, Ox(G) is also the largest subnormal subgroup of G that is in

K.

Proof. We have to show that every subnormal subgroup A << G with
A € K is contained in Ok (G). For A < G this is obvious. Thus, we may
assume that A is not normal in G. Hence, there exists a normal subgroup
N < @ such that

A d<I N < G.

By induction on |G| we may also assume that

Ok (N) is normal in G since it is characteristic in N. Moreover K
{N,S8,I1}, and as mentioned above Ox(N) € K. Hence A < Ox(N)
Ok (G).

OIA M

We call a class IC of groups closed, if for every X € K:

e The homomorphic images of groups from K are in K.
e The subgroups of groups from K are in K.

e Direct products of groups from K are in .

All the above mentioned classes are closed. Similarly to 1.5.2 and 1.5.1 on
page 24 one gets:
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6.3.2 Let K be a closed class. Then for every group G:

(a) G/OMG) eK.
(b)  (OF(@))? = O (G¥) for every homomorphism ¢ of G.

Proof. (a) follows from 1.6.4 on page 31 and the definition of a closed class.

(b) Let ¢ be a homomorphism of G. Then G¥/(O*(G))? is in K since it is
a homomorphic image of G/OX(G), i.e.,

O (G#) < (0™(G))*.

Now let ¢ be a homomorphism of G¥ in a group X € K. Then ¢ is
a homomorphism from G in X. This means that O*(G) < Ker (¢v) and
thus (O*(G))? < Ker 9. Tt follows that

(OX(G))? < NKer ¢ = OM(G¥),
P
where 1 runs through all homomorphisms from G¥ in a group of K. a

Let I be a closed class of groups. In analogy to the definition of solvability
we call a group G a K-group if

ON(U) # U for all subgroups 1 # U < G.

By K we denote the class of all KC-groups. Clearly I C K.
For example, by definition A=8S and N =8 =8.

With 6.3.2 in hand the same argument as in 6.1.1 shows that subgroups and
homomorphic images of K-groups are again K-groups. The proof of 6.1.2 on
page 122 gives:

6.3.3  Let K be a closed class. Then G € K if and only if there exists a
normal subgroup N of G such that N € K and G/N € K. a

From 6.3.3 we get as corollaries (also compare with 6.1.6 on page 123):

6.3.4 Let K be a closed class. Then Og(G) € K. O
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6.3.5 Let K be a closed class. Then E 1s also closed. O

6.3.6 Let IC be a closed class. The following statements are equivalent:

i) Gek.

(i) If GO =G and G = OF(GU—Y), for i > 1, then there exists { € N
such that G = 1.

(iii) G has a composition series all of whose composition factors are in
K. O

For the class II of m-groups we get Il = II. A similar equality is no longer
true for the class of m-closed groups:

Here a group G is m-closed if G/O,(G) is a ©’-group; in other words if

For example, the theorem of Schur-Zassenhaus 6.2.1 is a theorem about 7-
closed groups, 7 := w(K). In its proof we have used the fact that subgroups
and factor groups of m-closed groups are m-closed. Since also direct products
of m-closed groups are m-closed the class of all m-closed groups is a closed
class. We denote this class by II..

II. contains all m-groups and all n’-groups. The groups in ﬁc are called
n-separable.? Since II, is a closed class, m-separable groups—as explained
earlier—possess the same formal properties as solvable groups.

Exercises
Let G be a group.

1. Let C be the class of all groups H satisfying Cy(F(H)) < F(H). Then the
following hold:

(a) Oc(G)€C and G/O°(G) € C.
(b) Let NJG.If N and G/N are in C, then also G is in C.

8Compare with the remark following 3.2.2 on p. 63 about p-closed groups.
9Those who feel uncomfortable with this abstract definition may prefer the equivalent
property given in 6.4.2.
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6.4 mw-Separable Groups

In this section we investigated m-separable groups (m C P). Recall that a
m-separable group G satisfies the following:

e Every nontrivial subgroup of G has a nontrivial m-closed factor group.

Since Abelian groups are m-closed we get:
6.4.1  Solvable groups are w-separable. a

Hence, all results about m-separable groups are also results about solvable
groups. We will present some of these results after we have introduced
convenient notation. In the second part of this section we will characterize
the solvable groups within the class of m-separable groups. It will turn out
that solvable groups are characterized by the fact that a generalization of
Sylow’s Theorem holds for them. This was proved by P. Hall and became
the starting point for a today highly developed theory of solvable groups;
we refer the reader the book of Doerk-Hawkes [§].

6.4.2 A group G is w-separable if and only if G possesses a series
1=A0<A1<"'<A1’_1<Ai<"'<,An:G

of characteristic subgroups A; (i =1,...,n) such that every factor A;/A;—1
is a T-group or a T -group.

Proof. Let G be m-separable. Then also O'¢(G) is m-separable,'? and
G = G/0"(@)

is m-closed. Hence G/O,(G) is a 7'-group. As OUYe¢(G) is characteristic
in G, the characteristic subgroups of O"¢(G) and the inverse images of
characteristic subgroups of G are characteristic in G. Now induction on |G|
yields the desired series for G.

Conversely, let (A;)i=o,..n be as in the statement of 6.4.2 and G as in
6.3.6. Then G is contained in A,_1, and more generally GO < A,
in particular G = 1. Now 6.3.6 implies the G is m-separable. O

1077, is the class of m-closed groups.
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It is evident that a group is m-separable if and only if it is 7’-separable.
For a group G the subgroup O,/(G) is defined by
Or7(G)/Or/(G) := Ox(G/Ox(G))
and Oﬂ/ﬂ-w/(G) < G by
Oz (G) O (G) 1= Op/(G/Ori (G)).
Continuing in this way one gets a series of characteristic subgroups
1 S Oﬂ"(G) S OTI'/T((G) S OTFITI'T('/(G) S O7TI7T7TI7T(G) S T

which terminates in G if and only if G is w-separable.

For the particularly important case m = {p} this series is

1 < Op(G) < Opp(G) < Oppp (G) < Oppyp(G) < -+

6.4.3 Let G be a m-separable group and O (G) = 1. Then

Proof. Let C := Cg(Ox(G)) and K := CNO(G) (= Z(0Oz(G))). Then
C/K is a m-separable normal subgroup of G/K satisfying O,(C/K) =1
since Or(G) is the largest normal m-subgroup of G. Let K < A < C such
that A/K = O, (C/K). Then the theorem of Schur-Zassenhaus gives a
complement H of K in A, and

A=KH =KxH

since A < C. This implies H = O,/(A) and thus H < O/(G) = 1. Hence
O (C/K)=1=0,(C/K) and C = K. O

The following result consists of some frequently used consequences of 6.4.3:

6.4.4 Let G be p-separable for p € n(G) and P a Sylow p-subgroup of
Opp(G).

(a) Cg(P) < Opp(G); in particular:

0y(G) =1 = Ca(0y(G)) < 0y(G).
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(b) Let U be a P-invariant p'-subgroup of G. Then U is contained in
Oy (G).

(¢) If G has Abelian Sylow p-subgroups, then G = Oy, (G).

Proof. (a) Because of 3.2.8 (a) on page 66 we may assume that Oy (G) = 1.
Then P = O,(G), and the conclusion follows from 6.4.3.

(b) Again we may assume that O, (G) = 1. Then P = O,(G) and thus
U,P]<UNP=1. Now (a) gives U < Op(G) =1.

(c) Let P < S € Syl,G, S Abelian. Then S < Cg(P) and thus by (a)
S=P. O

A m-subgroup H of the group G is a Hall m-subgroup of G if
(|G : H|) C .

For example, for p € P the Hall p-subgroups of GG are the Sylow p-subgroups
of G. As for Sylow subgroups we denote by Syl;G the set of Hall m-subgroups
of G.

In contrast to the case m = {p}, where one has Sylow’s Theorem, in general
Hall m-subgroups do not always exist. For example, the alternating group
A possesses Hall {2, 3}-subgroups but not Hall {3,5}- and {2, 5}-subgroups
(3.2.12 on page 68).

With the same argument as in 3.2.2 on page 63, resp. 3.2.5 on page 65, we
get:

e Let Syl,G # &. Then

O0:(G)= () H.

He Syl _G

e Let HeSyl,G and N < G. Then

NN HeSylLN and NH/N € Syl G/N.

6.4.5 Fvery m-separable group contains Hall w-subgroups.
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Proof. Let G # 1 be a m-separable group and N # 1 a normal subgroup
of G. Since also G/N is m-separable we may assume by induction on |G|
that G/N contains a Hall m-subgroup

H/N (N < H <G).
If Ox(G) # 1, we choose N := O;(G). Then H is a Hall m-subgroup of G.
Assume that Or(G) =1. Then 1 # O, (G), and we choose

N = OW/(G)

Now N is a normal n’-subgroup of G and 7(H/N) C 7. The theorem of
Schur-Zassenhaus gives a complement Hy of N in H. This complement is a
Hall 7w-subgroup of G. O

We say that the 7-Sylow Theorem holds in G, if every m-subgroup of G is
contained in a Hall w-subgroup of G and all Hall m-subgroups are conjugate

in G.
6.4.6 Let G be a m-separable group satisfying the following:

(x)  Bvery m-section or every 7' -section of G is solvable.!*

Then the w-Sylow Theorem holds in G.

Proof. Let U be a m-subgroup and H a Hall 7-subgroup of G (6.4.5). It
suffices to show that U is contained in a conjugate of H. We prove this by
induction on |G].

Obviously, we may assume that G # 1. Let 1 42 N < G and G := G/N. By

induction there exists g € G such that Ug < H and (UN)Y =UIN < HN.
Since we are allowed to replace U by any conjugate we may assume

U< HN.

We now proceed as in 6.4.5: If Or(G) # 1 we choose N := O,(G). Then
HN = H and U < H. Assume that O (G) = 1. Then O (G) # 1
and we choose N := O,/(G). The m-subgroup U is a complement of N
in NU. Since also H N NU is such a complement (1.1.11) the theorem of
Schur-Zassenhaus shows that U is conjugate to the subgroup H N NU of
H. O

Since solvable groups are m-separable 6.4.6 implies:

1A 7r-section is a section that is a mw-group.
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6.4.7  The w-Sylow Theorem holds in solvable groups for every = C P. O

Result 6.4.7 in fact characterizes the solvable groups. To show this we need
two lemmata.

6.4.8 Let H, K be subgroups of the group G such that
(|G:H|,|G:K|) = 1.
Then G=HK and |G: HNK|=|G: H||G: K]|.

Proof. By 1.1.6
el _ el K|
|HK]| [H| K]
Hence n is a divisor of |G : H| and |G : K|. Since these two integers are
coprime we get n =1 and G = HK. Now
G 116 |GP

G H||G: K| = = ————— = |G:HnNK| O
[HI|K] Gl |H N K|

6.4.9 Let Hi, Hy and Hs be solvable subgroups of the group G such that
G = H1H2 = H1H3 and (|G : H2|,|G : H3|) = 1.

Then G is solvable.

Proof. If Hy = 1 then G = Hs is solvable. Assume that H; # 1. Let A
be a minimal normal subgroup of Hj. Then A is a p-group (6.1.3 on page
122). Since (|G : Ha|,|G : H3|) =1 we may assume that p does not divide
|G : Ha|. Thus Hs contains a Sylow p-subgroup of G. By Sylow’s Theorem
there exists g € GG such that A < Hs9. Since G = HoH; we may assume
that g € Hy. It follows that 49 ' = A < Hs and

N = (A%) = (Al — (AH2)y < [,

Hence, N is a solvable normal subgroup of G. Since G/N satisfies the
hypothesis we may assume by induction on |G| that G/N is solvable. But
then also G is solvable (6.1.2). O

Let G be a group. A set S of Sylow subgroups of G is a Sylow system of
G, if
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e |[SNSyl,G|=1 forall pe 7(G), and
e PQ=QP forall P,QeS.

Let S be a Sylow system of G. Then for every nonempty Sy C S a repeated
application of 1.1.5 and 1.1.6 shows that the group

IT P

PeSy

is a Hall w-subgroup of G, where
T = {pen(G)] (Syl,G) NSy # T}

Suppose that 7(G) = {p,q}, then PQ = QP = G for every P € Syl,G
and @ €Syl,G. Thus, each such pair is a Sylow system of G. Moreover,
a theorem of Burnside, mentioned earlier, shows that G is solvable; we will
prove this theorem in Section 10.2.

The following theorem, the characterization of solvable groups announced
above, shows in general that the existence of Sylow systems is equivalent to
solvability. The proof of the implication (v) = (i) requires the theorem of
Burnside.

6.4.10 Theorem (P. Hall).!'? Let G be a group. The following state-
ments are equivalent:

(i) G is solvable.

ii) G is w-separable for every set of primes 7.

iii) G contains a Hall m-subgroup for every set of primes .
iv) G contains a Hall p'-subgroup for every prime p.

v) G possesses a Sylow system.

Proof. (i) = (ii): 6.4.1.
(i) = (iii): 6.4.5.
(iii) = (iv): Trivial.

2See [63], [65], [66].
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(iv) = (v): For p € n(G) let H, be a Hall p’-subgroup of G, and for
@ # 1 Cw(Q) let
Hy = () H,.
peTm
First we show:

('Y Hj is a Hall 7’-subgroup of G.

This follows from 6.4.8 using induction on |r|. For |w| = 1 there is nothing
to prove. Assume that || > 2 and let p € 7 and o := 7\ {p}. Then

H, = H, N H,

Since by induction H, is a Hall ¢/-subgroup we are allowed to apply 6.4.8
with respect to the subgroups H, and H,. This gives ().

In particular, for p; € 7(G),

P, = N H,
pem(G)\{p:}
is a Sylow p;-subgroup of G. Let p;,p; € n(G). Then FP;, P; are Sylow
subgroups of
H = N H,,
pem(G)\{pipj}
and by (") H is a Hall {p;, p;}-subgroup of G. This gives P,P; = P;P; = H.
Hence {P;| p; € m(G)} is a Sylow system of G.
(v) = (i): If |7(G)] =1, then G is a p-group and thus solvable. If |7(G)| =
2, then the solvability of G follows from 10.2.1 on page 276. We now assume
that |7(G)| > 3 and that {Py,...,P,} is a Sylow system of G. For i €
{1,2,3} let
H; = ] P;.
JFi
Then |G : Hi|, |G : Ha|, and |G : H3| are pairwise coprime and
G = HHy, = H Hy = HyHs.

Moreover, since {Pi,...,P,} \{P;} is a Sylow system of H; we may assume
by induction on |G| that Hip, H2, and Hs are solvable. Hence 6.4.9 shows
that G is solvable. O

We conclude this section with a property of m-separable groups, which we
will refer to in Chapter 12. For m = {p} this property is a consequence of
Baer’s Theorem (6.7.6 on page 160) and therefore also true for groups which
are not p-separable.
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6.4.11 Let G be a w-separable group and A a m-subgroup of G. Then the
following statements are equivalent:

(i) AZLO0(G).

(i)  There ezists x € Orp(G) such that = € (A, A*) and (A, A¥) is not
a T-group.

Proof. If A < Oz(G), then (A, A¥) < Or(G) for all x € G. This shows (ii)
= (i).

(i) = (ii): Let G := G/O,(G). Assume that (A, A%) is a m-group for all
x € O (G). Then
[OW'(6)7Z] =1

and by 6.4.3 A = 1, which contradicts A £ O.(G). Hence, there exists
z € O (G) such that (A, A") is not a m-group. Let
G = (A, A") (£ O (G)A).

Then A £ O,(G1) and A* £ O(G1). If G1 < G, then induction on |G|
yields (ii). If G = G1, then (ii) is obvious. O

Exercises

1. Let G be a p-separable group, p € 7(G). Suppose that for all ¢ € 7(G)
and S € 8Syl, G:
Syl, Na(S) € Syl G.

Then G = Oy, (G).

2. (Example for 6.4.11) Let G := S5 and A := ((12)) < G. Then there exists
m C (@) such that A £ O,(G) and

(A, A*) is m-subgroup for all = € G.
3. Let G be a p-separable group. The p-length ¢,(G) of G is defined recursively
by:
l,(G) :=0,if G=0y(G), and
0,(G) = 14 6,(G/0yy (@), it G # Oy (G).
Show that ¢,(G) < ¢(P), P € Syl, G.
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6.5 Components and the (Generalized
Fitting Subgroup

The concepts mentioned in the title of this section came up around 1970 in
the course of the classification of the finite simple groups. They are examples
of how the essence of a new development is reflected by appropriate concepts
and that these concepts—as a language—contribute to the success of this
development.'3

A group K # 1 is quasisimple if K is perfect and K/Z(K) is simple.
Clearly, for every subnormal subgroup N of a quasisimple group K either
N < Z(K) or N =K.

This implies that nontrivial homomorphic images of quasisimple groups are

quasisimple.

Let G be a group. A subgroup K of GG is a component of G, if K is
quasisimple and subnormal in G. The first of these two properties is an
internal property of K, while the second one describes the embedding of
K in G. Therefore components K are endowed with similar inheritance
properties as subnormal subgroups in general:

e If K <U G, then K is a component of U.
e If K£N <G, then KN/N is a component of G/N.

e If K is a component of a subnormal subgroup of GG, then K is a
component of G.

Minimal subnormal subgroups of G are simple groups. Hence, those which
in addition are non-Abelian are components of G.

6.5.1 Let Z and E be subgroups of G such that Z < Z(G) and EZ/Z
is a component of G/Z. Then E' is a component of G.

Proof. Since Z < Z(G) we have E' = (EZ)', and since EZ 44 G also
E’ << G. Moreover, 1.5.3 on page 25 shows that E’ is perfect. Let N be a
normal subgroup of £’ and G := G/Z. Then either

N=E=E or N < Z(E).

13Namely the classification of the finite simple groups.
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The first case gives N < E' < NZ and thus N(Z N E’) = E’. Hence
N = E’ since E' is perfect. The second case gives [F', N] < Z and

[E/,N,E'] =1 = [N, E,E].

The Three-Subgroups Lemma (1.5.6 on page 26) yields [E’, E', N] =1 and
thus [E’, N] = 1, again since F’ is perfect. Hence N < Z(E'), and E’ is
quasisimple. O

6.5.2 Let K be a component of G and U a subnormal subgroup of G.
Then K <U or [U, K] =1.

Proof. Obviously, U = GG implies K < U. Moreover, as mentioned earlier,
K = G implies either U = K or [U, K] = 1. Thus, we may assume that
there exist proper normal subgroups N, M of G such that

K< N<G and U< M <.

In particular

Uy =[UK <NONM

and K < Ny (U;) =: Gy (1.5.5 on page 26). Thus, K is a component of G,
and U is subnormal (in fact normal) in G;. By induction on |G|, applied
to G1, we get

[Ul,K] =1 or K S Ul.

The first case gives
1 =[U,KK]=[K,UK]|

and then using the Three-Subgroups Lemma
1 = [K,K,U] = [K',U] = [K,U].

The second case gives K < M since [K,U] < M, and the conclusion follows
by induction on |G|, now applied to M. O

6.5.3 Let K1 and Ko be components of G. Then either K1 = Ko or
[K1, Ks] = 1. In particular, products of components are subgroups of G.
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Proof. In the case [Ki,Ks3] # 1 6.5.2 implies K; < K5 and by symmetry
also Ky < Kj. O

We now define two characteristic subgroups of G.

E(G) :  the subgroup generated by the components of G,
F*(G) = F(G)EG).

F*(G) is the generalized Fitting subgroup of G. Notice that by 6.5.2

[F(G), E(G)] = 1.

Let N be a minimal normal subgroup of GG. By 1.7.3 on page 38 either N
is Abelian and N < F(G), or N is product of components and N < E(G).
Hence:

6.5.4 F*(G) contains every minimal normal subgroup of G; in particular

F*(G)#1 if G#1. 0

6.5.5 (a) Let K be a component of G such that Z(K) = 1. Then
(K% is a minimal normal subgroup of G; in particular, (K) is the
direct product of the components conjugate to K.

(b) Let F(G) = 1. Then E(G) is the product of the minimal normal
subgroups of G.

Proof. (a) By 6.5.3 (K¢) is the central product of the components K9,
g € G, and thus by 1.6.7 a direct product since K is simple. Let N be a
minimal normal subgroup of G' contained in (K). Then 1.6.3 on page 30
shows that at least one of the factors K9 isin N. But then N = ((K9)%) =
(KY).

(b) By 6.3.1 on page 130 Z(K) < F(G) for every component K of G. Now
the hypothesis F/(G) = 1 implies that all the components of G are simple,
and (b) follows from (a). O

In general one gets:

6.5.6 Let E(G)# 1 and K,...,K, be the components of G. Set
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(a)  E(G) is the central product of Ki,...,Ky,, in particular

Z =2y Zn.
(¢) E(G)/Z = Eyx -+ x Ey.

n

Proof. Let Zy = ][] Z;- By 6.5.3 E(G) is the product of the normal
i=1

subgroups K Zy,...,K,Zy and

K, Zy N H KyZy = Zy.
i#]

Now 1.6.2 and 1.6.7 imply Zy = Z and (a)—(c). O

6.5.7 Let L be a subnormal subgroup of G.
(@) If L<F5G), then L= (LNF(G)(LNEG)).

(b) F*L)=F*(G)NL.

(¢) E(L)Cp)(L) = E(G). In particular, E(L) is normal in E(G).

Proof. Every component of L is also a component of G and F(L) < F(G)
(6.3.1 on page 130). Now apply 6.5.2, 6.5.6 (a) and [F(G),E(G)]=1. O

The following is the fundamental property of F*(G). It generalizes 6.1.4:

6.5.8 Theorem. Let G be a group. Then Cq(F*(G)) < F*(G).

Proof. Let L := Cq(F*(G)), Z :=Z(L), a
that F*(L) = 1 since this 1mphes L=1a

By 6.5.7 F*(L) < F*(G) and thus

L:=L/Z. It suffices to show
L < Z < F*(Q).

nd
nd
F*(L) = Z.

Hence, the inverse image of F' (f) in L is a nilpotent normal subgroup of L
(5.1.2 on page 100) and thus contained in F(L). It follows that F(L) = 1.
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If F*(L) # 1, then L contains a component E, Z < E < L. But then E' is
a component of L (6.5.1), which contradicts F*(L) = Z. O

Exercises

Let G be a group.

1. Describe F*(Cq(E(G))) and F*(Cq(F(Q))).

2. Let t be an involution of G and E a component of C¢(t). Then E normalizes
every component of G.

3.  Let Aut E/Inn E be solvable for every component E of G, and let F/(G) = 1.
Then
E(Cq(t) < E(G)

for every involution ¢ of G.
4. Let K be a subgroup of GG. Suppose that for every g € G:

K is a component of (K, K9).

Then K is a component of G (compare with 6.7.4 on page 159).

6.6 Primitive Maximal Subgroups

In this section we investigate embedding properties of maximal subgroups.
Let G be a group and M a maximal subgroup of G, and let N be a normal
subgroup of G. If N < M, then M/N is a maximal subgroup of G/N.
Hence, we may assume—possibly after substituting for G a suitable factor
group—that no nontrivial normal subgroup of G is contained in M. Then
M satisfies:

(%) 14N<M = M= NgN).

() 1#NJdG = G = MN.

Since the embedding property (x) will also be central in later investigations
we call a proper—not necessarily maximal—subgroup M of G primitive,

if M satisfies (x).
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Recall that point stabilizers of primitive permutation groups are primitive
maximal subgroups. Conversely, the action of G on the right cosets of a
primitive maximal subgroup M (by right multiplication) or on the conju-
gates of M is faithful and primitive.

We start with two elementary properties of primitive subgroups:

6.6.1 Let M be a primitive subgroup and N a normal subgroup of G such
that M NN # 1. Then Cg(N) = 1.

Proof. 1 NN M < M and the primitivity of M give
Ca(N) < Cg(Nn M) < M.

Thus Cg(N) =1 since Cg(N) is a normal subgroup of G. O

6.6.2 Let M be a primitive subgroup of G. Then no nontrivial subnormal
subgroup of G is contained in M. In particular M N F(G) = 1.

Proof. Assume by way of contradiction that there exists a subnormal sub-
group L # 1 of G such that L < M. Without loss we may further assume
that L is a minimal subnormal subgroup of G. Then L < F*(G), and from
6.6.1, applied to N = F*(G), we get

1= 2(F(G) (= Z2(F(G)) Z(E(G)))-

In particular F(G) =1 (5.1.5 on page 101). It follows that L is a component
of G. Now 6.5.6 on page 143 shows that (L) is a normal subgroup of E(G).
Hence, the primitivity of M yields first F(G) < M and then E(G) = 1.
This contradicts L # 1. O

6.6.3 Let M be a primitive subgroup, p € (M), and N a normal sub-
group of G. Suppose that M NN =1 and Op(M) # 1.

(a) p&m(N).

(b) For every q € w(N) there exists a unique M -invariant Sylow q-
subgroup of N.
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(¢) If |m(N)| > 2, then M is not a mazximal subgroup of G.

Proof. (a) For P := O,(M) the primitivity of M gives

M = Ng(P).
In particular, P is a Sylow p-subgroup of NP since NN M =1 (3.1.10 on
page 61). This implies p ¢ 7(N) (3.2.5).

(b) PN acts on Q:= Syl N by conjugation, and by Sylow’s Theorem N
is a transitive normal subgroup of PN. Hence 6.2.2 on page 127 applies
to PN and 2. It follows that Cq(P) # @ and Cn(P) is transitive on
Cq(P). Now Cn(P) < M NN =1 gives |Cqo(P)| = 1; in particular
Cq(P) = Cq(M) since P is normal in M.

(c) According to (b) there exists an M-invariant @ € Syl N. Since Q is a
proper subgroup of N we get M < QM < NM < G. O

6.6.4 Let M be a primitive subgroup and N a normal subgroup of G such
that
M N F*(N) # 1.

Then F(G) =1 and F*(N) = F*(G) = E(G). In particular, every minimal
normal subgroup of G is contained in N.

Proof. Note that F*(N) < F*(G) (6.5.7). Hence 6.6.1 implies
Z(F(G)) < Ca(F*(N)) = 1,
and thus F(G) =1 by 5.1.5 on page 101. In particular F*(NN) = E(N), and

F*(G) *2T Cpe(y(E(N)) E(N).

Another application of 6.6.1 gives F*(G) = E(N) = F*(N). O

In the following let M be a primitive maximal subgroup of GG. Then
G = F*(G) M.

For the rest of this section we will investigate this factorization. The results
will be collected in the theorem of O’Nan-Scott.

We distinguish three cases:
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(F1) F(G) = F*(G), F(G) is the unique minimal normal subgroup of
G,'* and M is a complement of F(G) in G.

(F2) G contains exactly two minimal normal subgroups N1 and Ny. These
normal subgroups are non-Abelian, i.e.,

F*(G) = N1 X N2 :E(G)
(F3) F*(G) is a non-Abelian minimal normal subgroup of G.

6.6.5 Suppose that G contains a primitive mazximal subgroup M. Then
either (F1), (F2), or (F3) holds.

Proof. Let N1 be a minimal normal subgroup of GG. Then
() G = N1 M.

From 6.6.1 we get Cg(N1) N M = 1. If Ny is Abelian, then (/) implies
N1 = Cg(Ny) and thus Ny = Z(F*(G)). It follows that Ny = F*(G).
Hence (F1) holds since M is a complement of N by 6.6.2.

We may assume now that no minimal normal subgroup of G is Abelian.
Then F(G) =1, and E(G) is the product of the minimal normal subgroups
of G (6.5.5 (b)). If Ny is the only minimal normal subgroup of G, then (F3)
holds.

Assume that there exists another minimal normal subgroup Ny of G. Then
N = N1N2 = N1 X NQ,

and NNM # 1 by (). As N = F*(N) we get E(G) = N from 6.6.4.
Hence, N; and Ny are the only minimal normal subgroups of G (1.6.3 (b)
on page 30), and (F2) holds. 0

We now discuss the three cases (F1), (F2), and (F3) separately.

6.6.6  Suppose that (F1) holds. Let p € (M) such that Op,(M) # 1.
Then all primitive mazimal subgroups of G are conjugate.™

“Thus F(G) is elementary Abelian.
15In particular, this holds for solvable groups G.
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Proof. Set P := Op(M) and F := F*(G). Then
M = Ng(P) and FP <G,

and by 6.6.3 (a)
Syl, M C Syl,G.

Let H be another primitive maximal subgroup of G. Then also H is a
complement of F’; in particular |H| = |M|. According to Sylow’s Theorem
there exists g € G such that P < HY. This implies

P=H'NFP < HY,

and thus HY = Ng(P) = M. O

6.6.7  Suppose that (F2) holds. Then there exists an M -isomorphism
a: N1 — Ny such that

M N F*YGQ) = {zz*| v € N1 }.16

Proof. Let D := M N F*(G). Then 6.6.1 implies
DNNi  =1=DnN Ns.

Since G = N;M we get F*(G) = N;D. Hence, for every x; € N there
exists a unique xo € No such that xixo € D, and the mapping

a:N1—>N2, X1 > T2

is an isomorphism. Moreover, this isomorphism commutes with the conju-
gation by elements of M since Ni, Ns, and D are M-invariant. O

We now start the discussion of case (F3) and begin with the remark (compare
with 1.7.1 (b) on page 36):

6.6.8 Let I' be a minimal normal subgroup of G and M a proper subgroup
of G such that G = F'M.

YThus, M N F*(G) is a “diagonal” of Ny x No.
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(a)  Suppose that U is a proper M -invariant subgroup of F'. Then UM is
a proper subgroup of G.

(b) M is a mazimal subgroup of G if and only if F N M is the unique
maximal M -invariant subgroup of F.

Proof. (b) follows from (a). For the proof of (a) we assume, by way of
contradiction, G = UM. Then U is normal in G, and thus F is not a
minimal normal subgroup of G. O

In case (F3) F*(G) is a non-Abelian minimal normal subgroup of G. We
investigate the following situation:

F  Fis a non-Abelian minimal normal subgroup of G;
M is a maximal subgroup of GG such that G = F M,
K is a component of F;
Moy == Ny (K);
Go := K Moy;
Go := Go/Cg,(K).

Then K is a non-Abelian simple group, and F' is the direct product of the
conjugates of K. In fact, since G = FM these conjugates are already
conjugate under M. This also shows that K £ M since F' £ M.

Note that K (< Gp) is isomorphic to K and thus is a minimal normal
subgroup of

Gy = K M.
6.6.9  Suppose that F holds.

(a) My is a mazximal subgroup of Gy.
(b) Let My # Go. Then My is a primitive mazimal subgroup of Gy.

(¢) MynKe{MNK,K}.



6.6. Primitive Maximal Subgroups 151

Proof. (a) We apply 6.6.8 (b) to Gy and My (with K in place of F). Then it
suffices to show that every proper My-invariant subgroup V' of K is contained
in K N M.

Let U := (VM) Then either UM = M or UM = G. In the first case we
have V' < K N Mj. In the second case we derive a contradiction, as follows.
Note that now U is normal in G. The minimality of F' gives F' = U. On
the other hand, V* < K% # K for every x € M \ My. It follows that
U=VCpr(K)=F (6.5.3) and V < F. But then V = K, a contradiction.

(b) The maximality of My follows from (a) since My # Go. To show the
primitivity of My let N < My such that N << Go. Then [N, K| =1 since
K £ My. As the mapping

K — K with x — T

is an N-isomorphism we get N < Cg,(K) and thus N = 1.

(c)Let V:i={r € K|T € MgNnK}. Then V = MgN K and V is an
Mjy-invariant subgroup of K, which contains My N K. Now the conclusion
follows from (a) and 6.6.8. O

6.6.10  Suppose that F holds.

(a) If KNM # 1, then My is a primitive mazimal subgroup of Gy.
(b) If KNM =1, then (bl) or (b2) holds:

(b1) K < My =Gy.
(b2) MoNK =1, and My is a primitive mazimal subgroup of Gy.

Proof. (a) This follows from 6.6.9 (b) if My # Go. Assume that My = Go.
Then K < My, and M NK = MyN K is K-invariant. This contradicts the
simplicity of K.

(b) This follows from 6.6.9 (c) and (b). O

The following conjecture can be verified using the classification of the finite
simple groups.

Schreier’s Conjecture:
Let E be a simple group. Then Aut E/Inn E is solvable.
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With the help of this conjecture one can show that case (b2) in 6.6.10 does
not occur:

According to 3.1.9 on page 60, Gy can be identified with a subgroup of
Aut K such that K = Inn K. Then

G_O/K < Aut K/ Inn K.

It fo_llows that Go/K and thus also My = MoK /K is solvable. Moreover,
|m(K)| > 2 since K is a non-Abelian simple group. Hence 6.6.3 (c) shows
that My is not maximal, which contradicts (b2).

We denote the set of components of the group X by IC(X). Let F' be as in
F and N a normal subgroup of F. Then (see 1.7.5)

N= X E and F:Nx( X E)
Eek(N) Eek(F)\K(N)

For E € K(F) let
g F— F

be the projection of F' onto E (we write mg(x) for the image of x € F).
6.6.11  Suppose that F holds and
1l=KnM&#FnM.

Then there exist normal subgroups Ni,..., N, of F such that the following
hold:

(a) F =Ny XX N,, and M acts transitively on {Ny,..., N, }.
T

by FNM=X(N;,NnM).
i=1

(¢) For every E € K(N;) the mapping

Ny,nNM — E with zvw— 7g(z)

is a Ny(E)-isomorphism (i =1,...,r).17
(d) o =G,
Y Thus, N; N M is a diagonal of the direct product N; = X E.

EEK(N;)
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Proof. Let D :=FNM and

F() = >< WE(D)
EcK(F)

Since D # 1 also Fy # 1. Moreover Fy £ M since K N M =1 and all
components of F' are conjugate under M. Hence 6.6.8 (b) gives Fy = F and
thus

(1) wr(D) = E for all E € K(F).

Choose a € D# such that the number of components E € K(F) with
mp(a) # 1 is minimal, and let N be the product of these components, i.e.,

K(N) = {E € K(F)| ng(a) # 1}.

Set
C :=Dn N

note that @ € C* and C < D. Then 1 # 7g(C) < wg(D) for E € K(N).
Now (1) and the simplicity of F give mg(C) = E. By the minimal choice of
a the mapping mg|c is injective. Hence we obtain:

(2) For every E € K(N) the mapping
C —E with z~— 7mg(x)
is a D-isomorphism.

That this isomorphism commutes with the action of D follows from the fact
that C” = C and EP = E.

We now show:
(3) Let de€ D and ¢ € C such that
g, (d) = mg,(c) for some Ey € K(N).
Then [N,dc™ '] =1.
For the proof of (3) let = € C. By (2)

7"-Eo(xd) = 7"—Eo(x)d = 71—E0<x)7TEO(d) = 7"—Eo(x)WEO(C) = ﬂ—Eo(xc)v
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and thus 2% = z¢ since 7g,|c is injective; in particular [C, f] = 1 where
f:=dc™1. Tt follows that for all E € K(N)

—~
~—

1 =mp(C, f]) = [me(C),7e(f)] = [E,7(f)),
and thus 7g(f) =1 since Z(F) = 1. This implies (3).

Of course, the statements (2) and (3) also hold with N™ (m € M) in place
of N.

Let Eg € K(N)NK(N™) and d := a™. By (2) there exists ¢ € C' such that
7g,(d) = g, (c). Hence (3), applied to N and N™, gives [NN™ dc™1] =
1. Together with dc=' € NN™ we get that d = ¢ € N N N™, and the
minimality of a yields N = N™. We have shown:

(4) NNN™=1o N = N™ for m € M. In particular Np/(E) <
Ny (N) for all E € K(N).

The second part of (4) implies that the mapping in (2) is an Ny (F)-
isomorphism for all E € IC(IN). With this remark (a) and (c) follow from
(2) and (4), where the N; are the conjugates of N. Moreover, (3) first gives

D = (DN N)x Cp(N)
and then after repeated application

D = X (N™n D).
meM

This is (b). Finally (d) follows from (c). O
The results 6.6.5 — 6.6.11 now yield:

6.6.12 Theorem of O’Nan-Scott.'® Let M be a primitive mazimal
subgroup of G. Then one of the following holds:

(a) F*(G)=F(G), and F(G) is the unique minimal normal subgroup of
G.

(b) F(G)=1, and F*(G) = N1 x Ny; here N1 and Ny are the only min-
imal normal subgroups of G. There exists an isomorphism o: N1 —
Ny such that F*(G)N M = {xx®| x € N;}.

'8See [81] and [35].
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(¢) F(G) =1, and F*(G) is the unique minimal normal subgroup of G.
Moreover one of the following holds, where the notation is as in F:
(cl) My is a primitive mazimal subgroup of Go (and KNM # 1).1
(2) Moy=Gy and MNF =1,

(3) Mo=Gog, 1 =KNM# FNM, and F is as described in
6.6.11. O

We now give an example for each of the cases that arise in the theorem of
O’Nan-Scott.

Case (a): G=53 and M =S5y (£G) or G=S; and M =53 (<@G).
In general (a) holds for every solvable group G as long as ®(G) =1 and G
contains exactly one minimal normal subgroup.

In the other cases F*(G) is the direct product of its components. For the
cases (b), (cl), and (c3) let
K=A; and H = K x K

and t € Aut H such that

(k1,k2)' = (ko, k1) for all (ky,ks) € H.
Using these data we construct a group G (and a primitive maximal subgroup
M) such that F*(G) = H.
Case (b): G:=H and M :={(k,k)| k € K}.

Case (cl): G = (t)H, the semidirect product of H with (¢), and M; is a
maximal subgroup of K. Let My := {(ki,k2)| k1,ke € M1} and M :=
Mo(t).

Case (c3): G is as in the example for (c1) but My := {(k,k)| k € K} and
M = M2<t>.

Case (c2): In the alternating group M := Ag the stabilizer
My = {z € Ag| 6* = 6}
is a subgroup isomorphic to As. Let G be the twisted wreath product

(A5a M7 M07 T)a

YK N M # 1 follows if one uses Schreier’s conjecture; see above.
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where 7: My — Aut A5 describes the action by conjugation, i.e., Im 7 =
Inn A5 (see Section 4.4). Then G is the semidirect product of a normal
subgroup

A\5:A5><A5><A5><A5><A5><A5

with M, and F*(G) = gg,. Moreover, M is primitive since Ag is simple,
and 1 and K are the only Mjy-invariant subgroups of K since My acts on
the first component K = As of ﬁ5 as Inn As. Now 6.6.8 shows that M is
a maximal subgroup of G (also compare with the proof of 6.6.9 (a).

Exercises

Let G be a solvable group.

1. Let U be a primitive group and N a minimal normal subgroup of G. Set
G :=G/N. Then U =G or U is a primitive subgroup of G.

2. Let Uy and U, be primitive subgroups of G such that |U;| < |Uz|. Then U,
is conjugate to a subgroup of Us.

6.7 Subnormal Subgroups

In this last section of the chapter we present two theorems of Wielandt about
subnormal subgroups. In particular, corollary 6.7.6 (Baer’s Theorem) is a
frequently used result.

6.7.1 Theorem (Wielandt [98]). Let G be a group and A and B sub-
normal subgroups of G. Then also (A, B) is subnormal in G.

Proof. Let G be a minimal counterexample®? and S the set of all subnormal
subgroups of G. Then there exist A, B € § such that (A, B) ¢ S. We fix
B and choose A € S maximal such that (A4, B) € S. It follows:

(1) If A< X eSthen (X,B)eS.

20This means: We assume that the theorem is false. Then there exist groups G that
satisfy the hypothesis but not the conclusion of the theorem. Among these groups we
choose G such that |G| is minimal.
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If A< @, then 1.2.8 on page 14 implies AB/A << G/A and thus (A4, B) =
AB € S. Hence

(2) A is not normal in G.

Since A € S there exist subgroups X and G; of G such that

(3) AL X A9 G; 9G and A # X, G # G.

Clearly A? << G, for every b € B since G is normal in G. The minimality
of G gives
A < (AP) << Gy

in particular (A7) € S. If A < (AB) then (1) implies
(4,B) = ((A%),B) 99 @,
which is not the case. Thus, we have (AB) = A, i.e.,
B < Ng(A).

Again by (1)
G2 = <X,B> S]S] G

If Gy # G then as above the minimality of G gives (A, B) << G2 and
(A, B) € S. Thus, we have

G = Gy = (X,B) < Ng(A),

which contradicts (2). O

The following lemma gives a typical property of subnormal subgroups (com-
pare with 3.2.6 on page 66):

6.7.2 Let X be a set of subnormal subgroups of the group G satisfying
YC =%, and let ¥g be a proper subset of ¥. Then there exists X € ¥ \ 2o
such that (o)~ = (o).

Proof. By 6.7.1, (3p) is subnormal in G. Since we may assume that (3g) #
G there exists a proper normal subgroup G; of G containing (). Hence,
the claim follows by induction on |G|, applied to G1, provided

S = {UeS|U < Gy} # .
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Assume that ¥y = ;. Clearly (El)G =Y since G¢¥ = G and X¢ = ¥
Hence (¥Xo) = (¥1) is normal in G. O

Central in the proof of the next theorem is the fact that a certain set of
subgroups contains a unique maximal element.?! Such uniqueness results are
frequently used tools in the investigation of finite groups. As the uniqueness
result used here?? is also needed in Chapter 12, we formulate it separately:

6.7.3 Let A be a subgroup of the group G and U a nonempty set of sub-
groups of G. For U € U set

Yy :={A% geG, AIIIU}.
Suppose that for all U, Uecl:
(1) AeXy.
(2) {Bexz|B<U}CYy.
(3)  There exists U € U such that Ng({Sy N ¥5)) < U.

Then U contains a unique maximal element.

Proof. Set

From (2) we obtain
Yy ={BeX|B<U}for UeclU.

By way of contradiction we assume that there exist two different maximal
elements U; and Us of U. In addition, we choose these maximal elements
such that

ZO = EUl N EUQ

is maximal. According to (3) Ng((Xp)) is contained in a maximal element
Us of U. The definition of ¥y, shows that (Xy,) < U;, and the maximality
of U; and (3) give

(*) Ui = NG(<ZUz>)7 1=1,2,3;

21With respect to inclusion.
220ne version of this result Wielandt calls the Zipper Lemma—according to the method
used in the proof; see [99], p. 586.
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in particular ¥y, # Xy,.

Let i € {1,2} such that 3y C Xr,. Then by 6.7.2 there exists X € X, \ X
with (30)* = (o). It follows that X € Xp,, and thus X9 C Sy, N Sy,
and U; = Us by the maximal choice of ¥y. Hence, we can choose notation
such that Us = Us and U # Us. Then ¥y = Xy, and by (x)

Uy = Na((Zv,)) < Us,

i.e., Uy = Us, a contradiction. O

6.7.4 Theorem (Wielandt [98]). Let A be a subgroup of the group G.
Suppose that
A 4 (A, A9)  forall g € G.

Then A 1s subnormal in G.

Proof. Note that the hypothesis also holds for all conjugates A*, x € G:

1

A<D (A A9 ) = AT QD (A", A9).

We now proceed by induction on |G| and assume that A is not subnormal
in G. Let U be the set of all proper subgroups of G that contain A; in
particular (A, A9) € U for all g € G since A is not subnormal in G. Let
U € U . By induction on |G| we may assume that every subgroup of

Yp:={A"| A" <U, ze€G}
is subnormal in U. Moreover for g C Xy and A € X
A 44 (3).

Hence (X¥¢) is not normal in G. It follows that Ng((Xo)) € U, and U
satisfies the hypothesis of 6.7.3. Thus there exists a maximal subgroup M
of G that contains (A, AY9) for all g € G. Hence

A9 En) G

and thus A << G which contradicts our assumption. O

Every subgroup of a nilpotent group is subnormal. This gives the following
corollary:
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6.7.5 Let A be a subgroup of G. Suppose that (A, A9) is nilpotent for
every g € G. Then A is subnormal in G; in particular A < F(G). O

Since p-groups are nilpotent we get as another corollary:

6.7.6 Baer’s Theorem [24]. Let x be a p-element of G. Suppose that
(x,x9) is a p-subgroup for every g € G. Then x € O,(QG). O

For the prime 2 we obtain:

6.7.7  Let t be an involution of G that is not in O2(G). Then there exists
an element y € G* of odd order such that yt =y~ 1.

Proof. By 6.7.6 there exists g € G such that (¢,t9) is not a 2-subgroup.
Then 1.6.9 on page 34 shows that d := tt9 is not a 2-element. Hence there
exists 1 # y € (d) of odd order, and again by 1.6.9 y' = y~!. O

The following lemma, which is similar to 6.7.6, will be needed in Chapters
10 and 11.

6.7.8 Matsuyama’s Lemma [80]. Let Z,Y be subgroups of G and
p € (G). Suppose that

(Z9Y)Y is a p-subgroup for all g € G.?
Then there exists a Sylow p-subgroup P of G such that
(Z9] g€ G, Z9 < P)

is normalized by Y %4

Proof. Let M be the set of all Y-invariant p-subgroups ) of G that have
the following property:

Z<Q and Q= (Z2%geCG, 29<Q).

2 This implies Z9 << (Z9,Y) for all g € G.
240n p. 169 this subgroup is denoted by wclg(Z, P).



6.7. Subnormal Subgroups 161

By our hypothesis (ZY) is contained in M; in particular M is nonempty.

Let @ be a maximal element of M and
Q < P¢e€ Sylp G.
We set
Y :={Z29geG, Z9<P} and %p:={Z9%ge G, ZI<Q}.

Then @ = (Xp), and the claim follows if ¥y = X.

Thus, we may assume that Yy C 3. Since all subgroups of P are subnor-
mal in P we can apply 6.7.2. Hence, there exists Z9 € X\ ¥y such that
79 < Ng(Q). Then also (Z97) < Ng(Q) since Q¥ = Q. It follows that
Q (Z9Y) € M, which contradicts the maximal choice of Q. O

Exercises
Let G be a group.

1. Let H<G<G. Then HNS € Syl, H for all pe€ P and S € Syl,G.
2. Let H be a solvable subgroup of G such that

SN HeSyl,H forall pe P and S € 5yl,G.

Then H is subnormal in G.
Let D be a conjugacy class of p-elements of G, p € P.

3. If (D) is not a p-group, then there exist x,y € D such that x # y and =z is
conjugate to y in (x,y).
4. Let EC D and |E| be maximal satisfying
(¥) E is a conjugacy class of (F).
Then (F) 49 G.
5. Let G = (D), EC D and |E| be maximal satisfying
(%) E # D and FE is a conjugacy class of (FE).

Then the set of all U < G with E C U and U = (U N D) contains a unique
maximal element.

6. (Baumann, [25]) Let G = (D) and D CU; U---UU, for proper subgroups
Uy,...,U, of G. Then r > p+ 1.
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Chapter 7

Transfer and p-Factor
Groups

7.1 The Transfer Homomorphism

To search for nontrivial proper normal subgroups is often the first step in the
investigation of a finite group. For example, if the group G has such a normal
subgroup N, then in proofs by induction one frequently gets information
about N and G/N, allowing one to derive the desired result for G (e.g.,
6.1.2 on page 122).

Since normal subgroups are kernels of homomorphisms it is suggestive to
construct homomorphisms of G in order to find normal subgroups. The
difficulty then is to decide whether the kernel of such a homomorphism is a
nontrivial and proper subgroup of G.

In the following let P be a subgroup of G. In this chapter we define a
homomorphism 7 from G into the Abelian group P/P’, whose kernel and
image can be described by means of p-elements if P is a Sylow p-subgroup
of G. This is in the spirit of the philosophy mentioned earlier, that the
structure of a group be deduced from its p-structure.

If G is non-Abelian, then clearly Ker 7 is nontrivial since G/Ker 7 is
Abelian. Hence, either G contains a proper nontrivial normal subgroup or
G = Ker 7. In the second case the description of Ker 7 in terms of the
conjugacy of p-elements in GG will yield information concerning the structure

of G.

163
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Let
P = P/P/

be the commutator factor group of P and
PP with z—=
the natural epimorphism to the Abelian group P.

Let S be the set of transversals of P in G. For R, S € S let

R|S:= [ rs! (€P).
(r,s)ERxS
Pr=Ps

(Compare with the definition on page 71.) Since the factors are elements of
the Abelian group P this product does not depend on their ordering. As in
Section 3.3 for R,S,T € S the following properties hold:

(1) (RIS)™" = SR

(2) (R[S) (S|T) = RIT.
We investigate the action of G on S by right multiplication:

geG

S — Sg.
Then
(3) Rg|Sg = RIS
and
(4) Rg|R = Sy|S.

For the proof of (4) note that

(Rg|R) (SglS)™" = (Rg|R) (R|Sg) (R|Sg)~" (Sg|S)~!
= (Rg|R) (RISg) ((R|Sg)(Sgls))~"

2 3
D (Rg|Sg) (RS)"+ Z

7.1.1 Transfer Homomorphism. Let S € S. The mapping
Tap: G— P with g+ Sg|S

is a homomorphism that is independent of the choice of S € S.
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Proof. The independence of the choice of S follows from (4). For z,y € G

Sayls 2 (SzylSy) (SyIS) = ((S=)ylSy) (SylS) L (S219) (Sy]S).

=

Hence 7¢_,p is a homomorphism. O

Next we want to calculate the transfer 27¢—? for x € G. To do so we study
the action of (z) by right multiplication on the set 2 := { Pg| g € G}. Let
Qq,...,Qk be the (x)-orbits of 2 and Pg; € ;. Then there exists a divisor
n; of o(z) such that (x™¢) is the kernel of the action of (x) on ;.

For i=1,...,k:
k
e n;, = and > n; =|G:P|;
=1
g Qz = {PgZ,PgZ.I', .- '7Pgixni_1};
e Pg;xz™ = Pg;, and thus gix”igi_l e P.
In particular

i=1,....k

is an element of S and satisfies

g {giz’} for j=1,...,m;—1
Sz 0 Pgix { {gix™} for j=0.
Hence
i o —1
(5) rTG—P — H gzx”zgz_ .
i=1

We now set
P = (y "y €P, geq).

Note here that y~1y9 = [y, g] and thus
P < P* < PNnG.

With this notation we get:

7.1.2 (276~P) P* = ZIGPIP* for x € P.
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Proof. For each factor in (5) we have
gieig; t = ai(zTMgaigrt) € a™ P,

and thus =
n; __
g7e-P =1 = Pl (mod P¥). O

Now let m be a nonempty set of primes and let P be a Hall m-subgroup of
G. Then PG'/G' = O,(G/G") and by 2.1.6 on page 46

G/G" = PG'/G" x 0+(G/G").
We denote the inverse image of O/ (G/G’") in G by G'(r). Then G'(7) is
the smallest normal subgroup of G having an Abelian 7-factor group.! Since

G = PG'(m) we get

(6) PNG(r)=PNnG and P/PNG = G/G(n).

7.1.3 Theorem. Let P be a Hall w-subgroup of G. Then
P*=PnG'(r)=PNG, and P/P* = G/G(m).

More precisely:  Ker 1g_.p = G'(7) and P = P* xIm 76_p.

Proof. Let 7 := 17g_,p. Note that (|P|,|G : P|) = 1 since P is a Hall
m-subgroup. Hence 7.1.2 implies

for all z € P (1.4.3 (b)). This gives P NKer 7 < P and then
PNnKert < P* and P=P*Imr

since P’ < P*.

Conversely, G'(m) < Ker 7 since 7 is a homomorphism into the Abelian
m-group P. It follows that

Pr<PncYPnc(n) <PnKern,

Tn the terminology of 6.3, G’(7) = O*(G), where K is the class of Abelian 7-groups.
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and thus P* = PNKer 7 = PNG'(7) = PN G'. Hence

G/G/(m)| > |G/ Ker 7| = |Im 7| > |P/P*| = |[P/Pn G| £ |G/G' ()]
and this implies Ker 7= G'(7) and |[Im 7| = [P/P*|. Since P=PImr

we get P = P* x Im 7. O

As a corollary one gets:

7.1.4 Let P be a Hall w-subgroup of G and P # P*. Then G # O™(G).
O

The importance of 7.1.3 and 7.1.4 lies mainly in the fact that the subgroup

PNG’ 2 can be calculated in P, provided one knows which of the elements of
P are conjugate in G. For m = {p} —according to Alperin’s Fusion Theorem
[20]—this conjugation takes place in the normalizers of certain nontrivial p-
subgroups. In a very special case this result has long been known. Thus:

7.1.5 Burnside’s Lemma ([4], p. 155). Let P be a Sylow p-subgroup
of G and Ay, Ay normal subsets of P.3 If Ay and Ay are conjugate in G,
then they are already conjugate in Ng(P).

Proof. Let g € G such that A{ = As. Then P < Ng(A;) implies P9 <
N¢(AY) = Ng(Asz). Hence, P and PY are two Sylow p-subgroups of Ng(As);
in particular they are conjugate in Ng(As2). Let z € Ng(Asz) such that
P9% = P. Then y := gz € Ng(P) and A,Y = A,. O

If P is an Abelian Sylow p-subgroup, then 7.1.5 can be applied to all subsets
of P; in particular
r,29 e P, ge G = 29 =2Y forsome ye Ng(P).

This implies P* = {x~'2Y |y € Ng(P), z € P}, and 7.1.3 gives:

7.1.6 Theorem. Let P be an Abelian Sylow p-subgroup of G and H :=
Ng(P). Then PNG' = PN H' and

pP/P N H = G/G(p) = H/H (p). O

2That is called the focal subgroup of P in G.
3That is, A; = A? for all = € P.
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Let Z and P be subgroups of G, Z < P. Then Z is weakly closed in P
(with respect to G), if

29<P geG = 29=21
7.1.7 Let P € Syl,G and let Z be a subgroup of Z(P) that is weakly

closed in P. Suppose that y € P and g € G such that y9 € P. Then there
exists ¢ € Ng(Z) with y? =9 .

Proof. Note that y9 € PN P9 and thus (Z,79) < Cg(y?). By Sylow’s
Theorem there exists ¢ € Cg(y9) such that (Z9, Z¢) is a p-group. It follows
that

<Zgh,ZCh> — <Zg)Zc>h <P

for some h € G, again by Sylow’s Theorem. Since Z is weakly closed in P
we get Z9" = Z°h = Z and thus

g = gct € Ng(2).

Now ¢ € Ca(y9) gives y9 = y9. O
From 7.1.7 we conclude, using 7.1.3:

7.1.8 Griin’s Theorem [62]. Let P be a Sylow p-subgroup of G and Z
a subgroup of Z(P) that is weakly closed in P. Set H := Ng(Z). Then
PNG = PNH and

P/(P NG = G/G(p) = H/H'(p).

In particular

G + OP(G) < H + OP(H). 0

We conclude this section with an elementary remark about weakly closed
subgroups:

7.1.9 Let P be a Sylow p-subgroup of G and Z a subgroup of P that is
normal in Ng(P). Then the following two statements are equivalent:

(i)  Z is weakly closed in P with respect to G.
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(ii) Z<ReSyl,G = ZdR.

Proof. (i) = (ii): If Z<R=PY ', ge G, then Z9 < P and thus Z9 = Z.
-1
Hence Z8 = 7P =17

(ii) = (i): Let Z9 < P. Since (ii) also holds for all conjugates of Z we have
Z9 4 P. By 7.1.5 there exists y € Ng(P) such that ZY = Z9, and the
hypothesis implies Z9 = ZY = Z. O

Let Z and P be subgroups of G, Z < P. The subgroup
wclqg(Z,P) == (Z9]|ge G, Z9<P)

is said to be the weak closure of Z in P (with respect to G).2

It is evident that the weak closure wclg(Z, P) is normal in Ng(P) and
weakly closed in P. In particular, one gets a result similar to that of 7.1.9

(ii):

welg(Z, P) < R € Syl,G = wclg(Z,P) = welg(Z, R).

7.2 Normal p-Complements

A normal subgroup N of the group G is a normal p-complement of G
if G is the semidirect product of N with a Sylow p-subgroup of G. This is
equivalent to

Oy (G) = N = OP(QG).

In other words, the existence of a normal p-complement is equivalent to G
being p’-closed. As we have seen in Section 6.3, also subgroups and factor
groups of groups with a normal p-complement have a normal p-complement.

From 7.1.6 one gets:

7.2.1 Theorem (Burnside ([4], S. 327)). Let P be a Sylow p-subgroup
of G. Suppose that Ng(P) = Cg(P). Then G has a normal p-complement.

“Compare 6.7.8 on p. 160.
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Proof. Let H := Ng(P). Then P < Z(H), so P is Abelian. By 3.3.1 on
page 73 there exists a complement A of P in H. Now P < Z(H) gives
H =P x A and thus H' NP =1, and the claim follows from 7.1.6. O

If Pin 7.2.1 is cyclic and p is the smallest prime divisor of |G|, then
Ng(P) = Cg(P) by 3.1.9 on page 60 and 2.2.5 (a) on page 51. Thus,
we have the following corollary:

7.2.2  Suppose that the Sylow p-subgroups of G are cyclic, where p is the
smallest prime divisor of |G|. The G has a normal p-complement. O

The following observation is used in the proof of the next theorem.

7.2.3 Let G be the semidirect product of the normal subgroup N with
the subgroup P. Let Z be a subgroup of P and let g € G such that
729 < P. Then there exists x € P with Z9 = Z*. In particular, every
normal subgroup of P is weakly closed in P.

Proof. The element g can be written ¢ = yxr with y € N and z € P since
G = NP. Then Z9 < P implies ZY < P. This shows that for all z € Z

[z,y] = 27y ley e NnP =1

and thus y € Cg(Z). Now Z9 = Z* follows. O

7.2.4 Normal p-Complement Theorem of Frobenius [47]. Let P
be a Sylow p-subgroup of G. Suppose that for every nontrivial p-subgroup
U of P, Ng(U) has a normal p-complement. Then G has a normal p-
complement.

Proof. Obviously, G has a normal p-complement if P = 1. Thus, we may
assume that P # 1. Then also

Z = Z(P) # 1.

By hypothesis H := Ng(Z) has a normal p-complement; in particular
OP(H) # H. We show:
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(") Z is weakly closed in P.

Using (') and Griin’s Theorem we get OP(G) # G. Since the hypothesis is
inherited by subgroups we may assume by induction on |G| that OP(G) has
a normal p-complement K. Then K < G and G/K is a p-group. Hence,
K is also a normal p-complement of G.

For the proof of (') it suffices to show the implication
Z <ReSyl,G = ZdR

(see 7.1.9). Hence, we assume that there exists R € Syl, G such that Z < R
and Z £ R. In addition, we choose R such that

S := Ng(2)

is maximal. Let S < T € Syl, Ng(Z). Since S < R and T € Syl,G we
also have S < T and thus by 3.1.10 on page 61

S < NR(S) and S < NT(S)

Let M := Ng(S) and Nr(S) < Ty € Syl, M. Then the maximality of S
shows that Z is normal in 7T}. Since by our hypothesis M has a normal
p-complement 7.2.3 implies that Z is weakly closed in T} with respect to M.
But then by 7.1.9 Z is normal in every Sylow p-subgroup of M in which it
is contained. Hence Z < Ng(S), which contradicts S < Ng(S), and (') is
proved. O

For p # 2 the preceding theorem was improved considerably by a result of
Thompson. In 9.4.7 on page 255 we will give a version of Thompson’s Normal
p-Complement Theorem. It turns out—for odd primes p—that G has a
normal p-complement if Ng(U) has one, where U is a certain characteristic
subgroup of P.?

Exercises

Let G be a group and P a subgroup of G.

1. Let P<Z(G). Then 27¢~r = zl&Pl for every x € G.
2. If P is an Abelian Hall subgroup of G, then PNG' N Z(G) = 1.

°U = W(P) in the notation of 9.4.
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10.

11.

12.
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Suppose that all Sylow subgroups of G are Abelian. Then G' N Z(G) = 1.

Let P be an Abelian Sylow p-subgroup of G. Then G has a factor group
isomorphic to Z(Ng(P)) N P.

Let P be a Hall subgroup of G such that Ng(P) = Cg(P). Then P has a
normal complement in G.

Suppose that Ng(P)/Cq(P) is a p-group for every nontrivial p-subgroup P
of G. Then G has a normal p-complement.

(Iwasawa [71]) Suppose that every proper subgroup of G is nilpotent. Then
G is solvable.b

If G contains a nilpotent Hall w-subgroup, (m C w(G)), then the 7-Sylow
theorem holds in G.

Let S €Sylo G and S = H{(a) be as in 5.3.2 (d) on page 108. Then G #
0%(G).

Let G = O%*(G). Suppose that G has dihedral or semidihedral Sylow 2-
subgroups. Then all involutions in GG are conjugate.

Let G be a perfect group with (generalized) quaternion groups of order at
least 16 as Sylow 2-subgroups. Then Cg(t) is nonsolvable for every involu-
tion t of G.

Prove Frobenius’s Theorem 4.1.2 for Frobenius groups with solvable Fro-
benius complements.

Let p and ¢ be two different odd primes. We denote the multiplicative group of the
field Z/pZ by Z; and set Z; = {1,...,p— 1}, where z = z + pZ. In addition, set

13.

R:={1,... B},

F(z,p):={reR| (—rz+pZ) N R # &},
F(z,q) :=={se€ S| (-sz+q¢Z)NS # &},
M :={(a,b) e R x S| —%gbp—aqg%_l}.

Let H:={1,p—1} <Z! and R= {z| x € R}. Then for all 7 € Z*:

v b
(a) Ris a transversal of H in Z.
(b) TE~H =z = (CD)IF@PI,

¢ T is a square in Z%, if and only if |F(x,p)| is even.
P

SCompare with Exercise 10 on p. 124.
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14. (a) |M|=|F(q,p)|+|F(p,q)|.
(b)  The mapping

e:RxS— RxS with (a,b)r—>(1%1—

is an involutionary bijection on R x S such that
i. Me=M,
ii. y*#yforall ye (RxS)\ M.

(c) Pt %2 =|F(g,p)| +|F(p,g)| (mod 2).

Y

g+1
2

_b)

15.  Prove GauB’ Quadratic Reciprocity Law using Exercises 13 and 14.
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Chapter 8

Groups Acting on Groups

The action of a group A on a set GG is described by a homomorphism
m: A— Sg;

see Section 3.1. Suppose that G is not only a set but also a group. Then
Aut G < Sg, and we say that 7 describes the action of A on the group G if
Im 7 is a subgroup of AutG. In other words, in this case the action of A
on GG not only satisfies O; and Qs but also

Os (gh)* = g*h® for all g,h € G and a € A.

The action by conjugation is the most important example for an action that
also satisfies O3. For example, if A a subgroup and G a normal subgroup
of a group H, then A acts by conjugation on the group G. In fact, in the
semidirect product A x, G the action described by 7 is the conjugation of
A on G (page 34).

In this chapter it is sometimes convenient (or even necessary) to use this
semidirect product, as it allows us to apply, for example, Sylow’s Theorem
or the Theorem of Schur-Zassenhaus. We then simply write AG in place of
A X, G.

8.1 Action on Groups

Let A be a group that acts on the group G. First we introduce some notation
that coincides with earlier notion if A and G are embedded in their semidirect
product.

175
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For UCG and BC A

Np(U):={be B| U’ =U},

Q

g(U):={be B|u’=wu forall ueU},

Q

(
Cu(a) :={uecU]|u*=u} (acd),
(

u(B) = 1 Cu(b).
beB

Cc(A) is the subgroup of fixed points of A in G, and C4(G) is the kernel
of the action of A on G. With respect to

gaCrA—(>G) 9° (ge@G, ac A

the factor group A/C4(G) acts faithfully on G.

We also use the commutator notation in this slightly more general situation:

lg,a] : =97 'g" (g€ G, ae A,
[U,a] :=([g,a]| g€ U) (ac€ A, UCQG),
U,B] :=([U,a]| a € By (BCA).

Similarly we define [a,g] := ¢~ %, [a,U] and [B,U]. The commutator
relations given in Section 1.5 also hold in this more general context:

[U,B]* = [U%, B (a€ A),
[A,G] =[G, A],
U< Co(A) < [U,A] =1.

In particular, the Three-Subgroups Lemma is at hand:
X, Y, Z| =Y, Z,X] =1 = |[Z,X,Y] =1,

where X,Y,Z now can be subgroups of G or A. Result 1.5.4 on page 25
now reads:
lgz,a] = [g,a]*[z,a] (9,x €G, a€A).

From this one gets that [G, A] is an A-invariant normal subgroup of G.
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8.1.1 Let U be an A-invariant subgroup of G. Then

[G,A] < U <= (Ug)*=Ug foradl g€ G, ac A.

Proof. For a€ A and g€ G

(Ug ) =Ug! < Ug®=Ug ! < [g,a] €U. O
8.1.2 Let N be an A-invariant normal subgroup of G.

(a) If A acts trivially on G/N, then [G,A] < N.
(b) If A acts trivially on N, then A also acts trivially on G/Cg(N).

(¢) If A acts trivially on N and G/N, then [G,A] < Z(N) and A" <
Ca(G).

Proof. (a) follows from 8.1.1.
(b) Let [N, A] = 1. Then

[N,A,G] =1 = [G,N, A],

and the Three-Subgroups Lemma gives [A, G, N] = 1.
(c¢) From (a) and (b) we get

G, A] < N 0 Ca(N) = Z(N),

and thus [G,A4,A] = 1 = [A,G, A]. Again the Three-Subgroups Lemma
yields the desired conclusion [A’,G] =[4,A,G] = 1. O

8.1.3 Let A be a p-group. Then there exists an A-invariant Sylow p-
subgroup of G.

Proof. Let A < P €Syl, AG. Then P := PN G is the desired Sylow
p-subgroup of G (3.2.5 on page 65). O

8.1.4 Let A be a p-group.
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(a) If pen(Q), then Cg(A) # 1.
(b) If G p-group, then |G, A] < G.

Proof. (a) By 8.1.3 there exists an A-invariant Sylow p-subgroup P of G.
Hence, P is a normal subgroup of the semidirect product AP. Since AP is
a p-group (a) follows from 3.1.11 (a) on page 61.

(b) This is 5.1.6 (iii) on page 101. O

8.1.5 Let K be an A-composition factor of G that is a p-group. Then
(K, Op(A)] = 1.

Proof. The p-group B := Op(A) acts on the p-group K, so by 8.1.4
Ck(B) # 1. Since K is an A-composition factor and Ck(B) is A-invariant
we get Ck(B) = K. O

Assume that G allows a direct decomposition
G=F x---xFE,
that is invariant under A, i.e.,

E* € {Ey,...,E,} forall a€ A and i€ {1,...,n}.

Under the additional hypothesis that A acts transitively on {Ey,..., E,}
we compare the fixed-point groups Cg(A) and Cg,(Na(E;)).

Let
Ee{E,...,E,} and B := Nu(FE),

and let S be a transversal for the cosets of B in A. Then

(+) G = (B4) = X E*.
seS

Under the above hypotheses the following hold:

8.1.6 (a) Cu(A)={]]¢’|ec Cr(B)}.

SES
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(b)! If B acts trivially on E and P < E such that (P¥) = E, then

G = (Cg(A), I1 P?).

seS

Proof. (a) Let g € G and

F = { [T €°| eGCE(B)}.

sES

As S is a transversal, for every (s,a) € S x A there exists a unique
(b(s,a),sq) € B x S such that

sa = b(s,a)sq.

Note here that the mapping s — s, is a bijection on S.

Let g = [] e® € F. Then for every a € A
seS

ga — H esa — H 6b(s,cb)sa — H eSa — g

SES seS sES

since e € Cg(B). Thus F < Cg(A).
Let g € Cg(A). By (4) ¢ has the unique representation

g= J]es (es€E?").

seS

For alla € A
[[Tes =9 =9"= I] e

seS ses

and the uniqueness of the representation gives

{es| s € S} = {es*| s € S}.
Let so € BNS and e :=egz,. Then ¢’ =¢ forall bc B and g= [[ e* € F,
so Cq(A) < F. <

(b) From (a) we get

Ca(A) = { [l e*l e € E},

seS

!This will be needed in Chapter 9.
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and for s € S

S

(P*)Ce@) = (P)F) = (PF)" = E”.

This is (b). O
We conclude this section with some remarks about cyclic operator groups.

8.1.7 Let A= {(a) be cyclic. Then for z,y € G
[33,&] = [y)a] — xy_l S CG(a)'

In particular, |G : Cg(a)| is the number of commutators [z,a], = € G.2

Proof. x712% = y7 1y <= yr ! =y%27% = yar~! = (yz=1)°

< yr~ ! e Cg(a). O

8.1.8 Let A= (a) such that [G,a®] =1, and let G be of odd order. Then
[r€Gla" = o7} = {[z.d]| € G},

and every coset of Cg(a) in G contains exactly one commutator [x,al.

Proof. Since [G,a?] =1 for every commutator [z, a]

r,al* = (z71'2%)® = sc_a:ca2 = 27 % = [z,a]"".
[z, a] ( :

The conclusion now follows from 8.1.7, if we can show that every coset of

Cg(a) contains at most one x such that 2% = 271

Let x and zf, f € Cg(a), be two such elements. Then
2 =zt (zf)® = flz7t and fi=Ff.

This implies
flamt = (@f) = atf = a7,

2This number is equal to |a®| in the semidirect product S := (a)G.
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so f¢ = f~1 and thus f* = f. As z has odd order, we get (x?) = ().
Hence f = f~! and thus f =1 since f has odd order. O

The operator group A acts fixed-point-freely on G if
Ca(A) = 1.

Similarly, the element a € A acts fixed-point-freely on G if Cg(a) = 1.
From 8.1.4 we get:

8.1.9 Let A be a p-group. Suppose that A acts fized-point-freely on G.
Then G is a p'-group. O

Now 8.1.8 implies:

8.1.10 Let a be a fized-point-free automorphism of G of order 2. Then
forall z € G

In particular G is Abelian.’ O

Also for arbitrary p € P the existence of a fixed-point-free automorphism
of order p has consequences for the structure of GG. A theorem of Thompson
shows in this case that G is nilpotent. We postpone the proof of this theorem
and further discussion of fixed-point-free action to Section 9.5 since another
fundamental theorem of Thompson (9.4.7 on page 255) is needed for this.
Here we only remark that fixed-point-free automorphisms “behave well”
with respect to induction:

8.1.11  Let a be a fized-point-free automorphism of G.

(a) G={[z,d]| z€G}={z"12%| z € G}.

(b)  For every p € m(G) there exists an a-invariant * Sylow p-subgroup of
G.

(¢) Let N be an a-invariant normal subgroup of G. Then a acts fized-
point-freely on G/N.

3This is Exercise 10 on p. 10.
“a-invariant = (a)-invariant.



182 8. Groups Acting on Groups

Proof. 8.1.7 is (a). For the proof of (b) let P € Syl,G and g € G such
that P* = P9. By (a) there exists x € G such that g = z7'2% Now (b)
follows since

1 —a

(P,’,Ci )a — PG%

—a —1

= P*

—a —1,.a

_P.’I} x

xT

= p9*

(c) Let (zN)® = zN for some x € G, so x 12® € N. Then (a), applied
to (N,a|y), shows that there exists y € N such that z712% = y =1y This
implies

a _ (yx—l)a

and thus =y and N = yN = N. a

ya~ ! = ya”

Frobenius groups provide examples for fixed-point-free action:

8.1.12  Let G be the semidirect product of the nontrivial subgroup H with
the normal subgroup K. Then the following statements are equivalent:

(i) G is a Frobenius group with Frobenius complement H and Frobenius
kernel K.

(ii) Ck(h)=1 forall h€ H#J5

Proof. The factorization G = HK together with 4.1.7 on page 80 implies:
(i) <= H N H® =1 forall z € K¥.
On the other hand, since HNK =1 we get for all h € H* and z € K7:
WeHNH® «— ¢ 'hlah = [z,h) € HN K < z € Cx(h)¥.

Now the equivalence of (i) and (ii) follows. O

Exercises

Let A be a group acting on the group G, and let AG be the semidirect product of
A with G.

®That is, h acts fixed-point-freely on K (with respect to conjugation).
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1. Let p: A — Sg and p: G — Sg be the homomorphisms describing the
action of A on G and the action of G on the set G' by right multiplication,
respectively. Suppose that A acts faithfully on G. Then

AG = A*G*.

2. Let G be solvable, A nilpotent and N an A-invariant normal subgroup of G.
Suppose that A acts fixed-point-freely on G. Then A acts fixed-point-freely
on G/N (compare with Exercise 8 on page 124).

Let [G,A;1] := |G, A] and [G, A;n] := [[G, A;n — 1], A] for n > 2. Then A acts
nilpotently on G if there exists an n € N such that [G, A;n] = 1.

3. Let A and G be p-groups. Then A acts nilpotently on G.

4. A acts nilpotently on G if and only if A is a subnormal subgroup of AG.

5. Let A; and Ay be two normal subgroups of A. If A; and As act nilpotently
on GG, them also A; A, acts nilpotently on G.

6. Let C%(G) be the subgroup generated by all subnormal subgroups of A that
act nilpotently on G. Then C%(G) acts nilpotently on G.

In the next two exercises G acts by conjugation on G, and Cg(G) is the subgroup
defined in Exercise 6.

7. C5(G) = F(G).

8. Let F be the set of all normal subgroups N of G satisfying C&(N) < N.
Then

PG = NN

8.2 Coprime Action

As in Section 8.1 let A be a group that acts on the group G. The action of
A on G is coprime if

1) (ALIG) =1,

(2) A or G is solvable.®

6Again we want to emphasize that the theorem of Feit-Thompson mentioned earlier
shows that (1) implies (2) since at least one of the groups A and G has odd order.
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In the semidirect product AG the subgroup A is a complement of the normal
subgroup G, so in the case of coprime action the hypothesis of the theorem
of Schur-Zassenhaus is satisfied. Hence, every subgroup of order |A| in AG
is conjugate to A.

A first consequence of this conjugacy-property is:”

8.2.1 Suppose that the action of A on G is coprime. Let U be an A-
invariant subgroup of G and g € G such that (Ug)? = Ug. Then there
exists ¢ € Cq(A) such that Ug = Uec.

Proof. U4 = U and (Ug)4 = Ug imply g%g~' € U for all a € A. In the
semidirect product AG we get a 'gag~' € U and
1

A9 < AU.

Hence, A and A9 are complements of U in AU, and by the theorem of
Schur-Zassenhaus (6.2.1 on page 125) they are conjugate in AU. Thus,
there exists u € U such that A% = A9 . For c¢:= ug this gives

¢ € Nag(A) N Uy,

and [A,c] <ANG=1. O

For the special case that A is a p-group the proof of 8.2.1 does not require
the theorem of Schur-Zassenhaus but follows from 3.1.7 on page 59 (with
Q:=Uyg).

8.2.2 Let N be an A-invariant normal subgroup of G. Suppose that the
action of A on N is coprime.

(a)  Cgyn(A) = Cg(A)N/N. %7

(b) If A acts trivially on N and G/N, then A acts trivially on G.19

TA similar statement is also true for left cosets.
®In general only Cg(A)N/N < Cg/n(A).
?Compare with 3.2.8 (a) on p. 66.

0 Compare with 8.1.2.
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Proof. (b) is a consequence of (a), and (a) follows from 8.2.1 with U := N.
O

The next result, another important consequence of the theorem of Schur-
Zassenhaus, is in the spirit of Sylow’s Theorem. As for 8.2.1, the proof is
elementary if A is a p-group.

8.2.3 Let p be a prime divisor of |G|. Suppose that the action of A on G
18 coprime.

(a)  There exists an A-invariant Sylow p-subgroup of G.
(b)  The A-invariant Sylow p-subgroups of G are conjugate under Cg(A).

(¢) Every A-invariant p-subgroup is contained in an A-invariant Sylow
p-subgroup of G.

Proof. The semidirect product AG acts on the set (2 := Syl, G by conju-
gation, and by Sylow’s Theorem G is transitive on €. Hence, (a) and (b)
follow from 6.2.2 on page 127 with (G, A) in place of (K, A).

(c) Let U be a maximal A-invariant p-subgroup of G. We show that U is a
Sylow p-subgroup of G.

Assume that U ¢ Syl,G. Then U is not a Sylow p-subgroup of G; :=
N¢g(U) (3.2.6 on page 66). As (i1 is A-invariant, there exists an A-invariant
T € Syl, Gy by (a). But U < T, which contradicts the maximality of U. O

The intersection O,(G) of all Sylow p-subgroups of G is the largest normal
p-subgroup of G. An analogue statement is true in the situation of 8.2.3.

8.2.4  Suppose that the action of A on G is coprime. Let p € n(G). Then
the intersection of all A-invariant Sylow p-subgroups of G is the largest A-
invariant p-subgroup of G that is normalized by Cg(A).

Proof. By 8.2.3 (a), (b) there exists S € Syl, G such that S4 =8, and

{PeSyl,G| P* = P} = {S°| ce Cq(A)}.
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Hence, the intersection of these Sylow p-subgroups is Cg(A)-invariant.

Any A-invariant p-subgroup U is contained in an A- invariant Sylow p-
subgroup of G (8.2.3 (c)). If in addition U is normalized by Cg(A), then—
as seen above—U is contained in every A-invariant Sylow p-subgroup and
thus in their intersection. O

8.2.5 Suppose that the action of A on G is coprime. Let P be an A-
mvariant Sylow p-subgroup of G. If H is a subgroup of G that is invariant
under A and Cg(A), then PN H is a Sylow p-subgroup of H.

Proof. By 8.2.3 (a), (c) there exists an A-invariant Sylow p-subgroup R of
H such that PN H < R and an A-invariant Sylow p-subgroup S of G such
that R < S, i.e.,

HnS =R

Hence, there exists ¢ € Cg(A) such that S¢ = P (8.2.3 (b)), and by our
hypothesis H¢ = H. It follows that

HNP=HnS e Syl,H 0

In Chapter 11 we will need variations of 8.2.3, 8.2.4, and 8.2.5 for solvable
groups GG. Note that in the previous proofs we only used—apart from the
theorem of Schur-Zassenhaus—Sylow’s Theorem for a prime p € 7(G).

If we replace p be a nonempty set m C 7(G) for which the 7-Sylow Theorem
holds (see 6.4.7 on page 137), then the above arguments yield results with
the term Sylow p-subgroup replaced by the term Hall 7-subgroup.

Since the m-Sylow Theorem holds in solvable groups (6.4.7 on page 137) we
get:

8.2.6  Suppose that the action of A on the solvable group G is coprime.

(a)  There exist A-invariant Hall m-subgroups of G.
(b)  The A-invariant Hall m-subgroups of G are conjugate under Cg(A).

(¢)  FEwvery A-invariant mw-subgroup is contained in an A-invariant Hall 7-
subgroup of G.
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(d)  The intersection of all A-invariant Hall w-subgroups of G is the largest
A-invariant w-subgroup of G that is normalized by Cg(A).

(e) If P is an A-invariant Hall 7w-subgroup of G and H an A-invariant
subgroup of G normalized by Cg(A), then PNH is a Hall w-subgroup
of H. a

The correspondence between the fixed-point group of A in G and in factor
groups of G described in 8.2.2 (a) has some interesting consequences.

8.2.7 Suppose that the action of A on G is coprime.

(a) G=1G,A]Cq(A),
(b) [G.A] =[G, A,A.

Proof. (a) follows from 8.2.2 (a) with N := [G, A]; note 8.1.1 (a). The
commutator formula 1.5.4 on page 25 shows that (a) implies (b). O

8.2.8 Thompson’s P X Q -Lemma. Let A = P x Q be the direct
product of a p-group P and a p'-group Q. Suppose that G is a p-group such
that

Ca(P) < Ca(Q).
Then @ acts trivially on G.

Proof. Cy(P) < Cy(Q) for all A-invariant subgroups U < G. Thus, we
may assume be induction on |G| that [U,Q] =1 for all proper A-invariant
subgroups of G. As by 8.1.4 (b) [G, P] is a proper subgroup, we get

[G,P,Q] =1 and [P,Q,G]=1,

the second equality holds since [P,Q] = 1. The Three-Subgroups Lemma
gives [Q,G,P] =1, i.e.,

[Q,G] < Ca(P) < Ca(Q),

and [G,Q,Q] = 1. Now [G, Q] = 1 follows from 8.2.7 (b) (with @ in place
of A). O
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8.2.9  Suppose that A acts trivially on G/®(G).

(a)  If the action of A on ®(G) is coprime, then A acts trivially on G.

(b) If ®(G) is a p-group, then also A/Ca(G) is a p-group.

Proof. (a) 8.2.2 (a) gives G = ®(G) Cz(A) and thus G = Cg(A) (5.2.3).
(b) By (a) every p’-subgroup of A acts trivially on G. O

8.2.10 Let G be a p-group and K the set of all A-composition factors of
G. Suppose that the action of A on G is coprime. Then

N Ca(K)/Ca(G) = Op(A/Ca(G)).
KeK

Proof. We may assume that A acts faithfully on G. By 8.1.5 O,(A) acts
trivially on each A-composition factor K € K. On the other hand, by 8.2.2
(b) every p’-subgroup B < A acts trivially on G, if B acts trivially on each
A-composition factor K € K. This shows the assertion. O

The next result will be used in Chapter 11.

8.2.11  Suppose that the action of A on G is coprime. Let G be the pro-
duct of two A-invariant subgroups X andY . Then Cg(A) = Cx(A) Cy(A).

Proof. Let g=xay € Cg(A), x € X, y €Y. Then zy = (zy)* = x*y® and
thus
clat =yy e XNY =U

for all a € A. This implies (zU)* = 2U and (Uy)? = Uy. By 8.2.1 there
exist elements ¢ € Cx(A), d € Cy(A) and u,w € U such that

z =cu and y = wd'!

1Gee footnote 7.
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Since cuwd = zy € C(A) also
uw € Cg(A) N X NY,

and zy € Cx(A) Cy(A) follows. O

We conclude this section with a particularly important application of the
P x Q-Lemma:

8.2.12 Let p e n(G) and G := G/Oy(G). Suppose that
(x) C4(0,(@) < 0,(@).
Then for every p-subgroup P < G

Oy (Na(P)) = Oy(G) N Ne(P).

Proof. Cq(P) < Ng(P) implies
Oy (N6(P)) = Oy (Ca(P)).
Hence, it suffices to show that
Oy (G) N Cg(P) = Op(Ca(P)).

The inclusion Oy (G) N Cq(P) < Oy (C(P)) is trivial.
For the proof of the other inclusion we may assume that O, (G) =1 (3.2.8
on page 66). Set

G1 = 0p(G) and Q := Oy (Ca(P)).

By our assumption Cg(G1) < G1, and PQ = P x Q acts on the p-group
G1. As Cg,(P) is anormal p-subgroup of Cq(P), the group @ acts trivially
on Cg, (P). Hence the P x Q-Lemma (8.2.8) gives @ < Cg(G1) < Gy, so
Q=1. O

Observe that solvable groups—more generally p-separable groups—satisfy
hypothesis (%) in 8.2.12; see 6.4.3 and 6.4.1.

As a corollary of 8.2.12 we get:
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8.2.13 Let P be a p-subgroup of G and U < Oy (Ng(P)). Suppose that
U and P are contained in the solvable subgroup L < G Then U < Op(L).

Proof. We have U < O, (Np(P)). Hence, the assertion follows from 8.2.12
(with L in place of G) since L is solvable. 0

Exercises

Let A be a group that acts on G.

1. Suppose that the action of A on G is nilpotent and faithful (see page 183).
Then 7(A) C n(G).

2. Let U <Cg(A) and x € G such that U < Cg(A). If the action of A on
G is coprime, then there exists a y € Cg(A) such that U” = UY.

3. (Zassenhaus [102]) Let |A| = 2 = |Cg(A)|. Then there exists an Abelian
normal subgroup N of G such that

(a) 2% =2z2"" for a € A*.
(b)  If |G/N| #2, then N = Z(G) and G/N = A,.

4.  Let G be m-separable. Then the mU{p}-Sylow Theorem holds in G for every
p € ©'. (Use the fact that every m- or n’-section of G is solvable.)

8.3 Action on Abelian Groups

In the next two sections we investigate the action of groups on Abelian
groups. So in the following let A be a group that acts on the Abelian group
V. Here the choice of notation should remind the reader that in many
applications V' is an elementary Abelian p-group and thus also a vector
space over [, .

The action of A on V is irreducible if 1 and V' are the only A-invariant
subgroups of V and V # 1. For the semidirect product AV this means
that V is a minimal normal subgroup and A a maximal subgroup.

The following remark is fundamental for this section:
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8.3.1 Let A be a nonempty set of proper subgroups of A such that
(#) At =] B?, v
BeA

and k:=|A| - 1. If
(kIV]) =1

and V # 1, then there exists B € A such that Cy(B) # 1.

Proof. For v eV and B < A set

vp = [[ v* =0 [[ %

a€B a€B#
Then

(vp)* = T[] v* = vp
a€eB

for every b € B, so vg € Cy(B). Since A is a partition of A we get

Vg = (H UB)U_k.

BeA

Assume that 1 = Cy(B) (> Cy(A)) for all B € A. Then vg =v4q =1
and thus v=% =1 for every v € V. But now (k,|V|) =1 implies V =1, a
contradiction (compare with 2.2.1 on page 49). O

8.3.2 Theorem. Let V #1 and
(+) Cv(a) = 1 forall a € A7,

Then A s cyclic provided one of the following conditions holds:

(a) A is Abelian.

(b) A is a p-group for p # 2.

(c) A is a2-group but not a quaternion group.'3

12 A is called a partition of A. A beautiful treatment of groups possessing a partition
can be found in [16].
13See 8.6 for such an action of the quaternion group.
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(d) |A| = pq, where p,q are (not necessarily different) primes.

Proof. Note first that hypothesis (+) also holds for every subgroup 4; < A
in place of A.

Let p € m(A) and Ay € Syl, A. Then A; acts on the Sylow p-subgroup V),
of V' (see 2.1.6 on page 46). If V}, # 1, then by 8.1.4 A; has a nontrivial
fixed point in Vj,. Hence V},, =1, and the action of A on V' is coprime.

We now assume that A is not cyclic. In the cases (a), (b), (¢) we apply 2.1.7
and 5.3.8 to get an elementary Abelian subgroup A; < A of order p?>. By
induction on |A| we may assume that A = A;. In case (d) A is—again by
2.1.7—mon-Abelian of order pq, p # q, or elementary Abelian of order p?
and p =gq.

Let A be the set of all subgroups of prime order of A. Since |A| = pq the
set A is a partition of A as in 8.3.1.
If A is elementary Abelian, then

2

—1
A4 =2 —pt1.
p—1

Let A be non-Abelian of order pg and ¢ < p. Then A is the set of nontrivial
Sylow subgroups of A, and Sylow’s Theorem shows that G possesses exactly
p Sylow g-subgroups and exactly one Sylow p-subgroup. As before |A| =
p+ 1.

The coprime action of A on G gives (p,|V]) = 1. Hence 8.3.1 contradicts
hypothesis (+). O

Compare the next result with 8.6.1 on page 211.

8.3.3 Let A be Abelian. Suppose that the action of A on V is irreducible.
Then A/C4(V) is cyclic.

Proof. We may assume that C4(V) = 1. Then Cy(a) # V for all a € A",
Moreover for all x € A

Cy(a)® = Cy(a®) = Cy(a)
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since A is Abelian. The irreducible action of A on V gives Cy(a) =1 for
all a € A#, and the assertion follows from 8.3.2. |

As a corollary of 8.3.3 one gets that the multiplicative group of a finite field
is cyclic:

Let F' be a finite field with additive group V and multiplicative group A.
Then the distributive law shows that A acts by right multiplication on V.
Moreover, this action is faithful and transitive on the Af, thus also irre-
ducible. Now 8.3.3 shows that A is cyclic.

Another important corollary of 8.3.3 is:

8.3.4 Let A be an Abelian group acting on the group G. Suppose that the
action of A on G is coprime.

(a) G={(Cg(B)| B<A and r(A/B)<1).1

(b) If A is not cyclic, then G = (Cg(a)| a € A7),
(¢) [G,Al=([Ca(B),Al| B<A and r(A/B)<1).

Proof. Let B be the set of all subgroups B < A such that A/B is cyclic.

(a) We first treat two particular cases and then show that the general case
can be reduced to these cases.

First assume that G is Abelian. If A acts irreducibly on G, then B :=
Ca(G) € B by 8.3.3, and we get G = C(B). Hence, we may assume that
A is not irreducible on G. Let W be an A-invariant subgroup of G such that
1 # W # G. Induction on |G|, applied to the pairs (W, A) and (G/W, A),
shows that

W = (Cw(B)| BEB) and G/W = (Cqw(B)| B € B).

Since the action of A on G is coprime 8.2.2 implies that
Cayw(B) = Ca(B)W/W,

and thus
G = (Ca(B)W | BeB) = (Cq(B)| B € B).

r(A/B) <1 means that A/B is cyclic; see page 48.
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Assume next that G is a p-group. Then A acts on the Abelian factor group
G/®(G). Hence 8.2.2 (a) and the case already proved above give

G = (Ca(B)| BeB)(G)

and then together with 5.2.3 the assertion.

In the general case 8.2.3 (a) shows that for every p € w(G) there exists an
A-invariant Sylow p-subgroup G, of G. As seen above the assertion holds

for the pair (Gp, A) and thus also for (G, A) since G = (G, | p € ©(G)).
(b) follows from (a).

(c) For B € B the subgroup G := Cg(B) is A-invariant since A is Abelian.
Hence by 8.2.7

Gp = [Gp, Al Cay(A) = [Gp, A Ca(A).
For G := ([Gg,A]| B € B) this implies

Gh Ca(A) = ([Gr, A|Ca(A)| BEB) = (G| BeB) 2 G.

In particular |G, A] < G;. The other inclusion is trivial. O

We conclude this section with a further look on Frobenius groups. This is
done using Frobenius’s Theorem that Frobenius kernels are subgroups (4.1.6
on page 80).

8.3.5 Let G be a Frobenius group with Frobenius complement H and
Frobenius kernel K. Suppose that G acts on a nontrivial Abelian group
V' such that

(IV],|K|]) =1 and Cy(K) = 1.

Then Cy(H) # 1.

Proof. Set A := G and
A:={K} U {H"| ac A}
Then A is a partition of G as in (#) of 8.3.1. Moreover by 4.1.5 on page 80

(Al =1 = {H"| a € A}| = |K].
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According to 8.3.1 there exists B € A such that Cy(B) # 1. Moreover,
B e {H"| a € A} since by our hypothesis Cy(K) = 1. Thus Cy(H) # 1.
O

We now use 8.3.5 to answer the question about the uniqueness of Frobenius
complements raised in Section 4.1 and to discuss their structure.

8.3.6 Let G be a Frobenius group with Frobenius complement H and
Frobenius kernel K, and let G1 be a subgroup of G. Suppose G = G1K.
Then G1 contains a conjugate of H.

Proof. Since G; £ K we may assume after suitable conjugation that H N
G1 # 1. If G1 < H, then the Dedekind identity (1.1.11) shows that H =
Gi(HNK) and thus H =Gy since HNK = 1.

If H £ G1, then (G is a Frobenius group with Frobenius complement H N
G1 and Frobenius kernel K NGy (4.1.8 (a)). In particular |Gi| = |K N
G1||HNG1|. On the other hand, the Homomorphism Theorem gives G /K =
G1/G1 N K and thus

|H| = |G/K| =|G1/Gi1 N K| =[H NG,

which contradicts H £ G. O

8.3.7 Let G be a Frobenius group. Then all Frobenius complements of G
are conjugate.

Proof. Let H and Hy be two Frobenius complements of G. By 4.1.8 (b) on
page 81 we may assume that Hy < H, so it suffices to show that Hy = H.

Assume that Hy < H. By 4.1.8 (a) H is a Frobenius group with Frobenius
complement Hy. Let K be the Frobenius kernel of G with respect to H and
Ky the Frobenius kernel of H with respect to Hy. Note that KK is the
Frobenius kernel of G with respect to Hy.

Let
pen(K), PeSyl,K, V = Z(P), and Gy := Ng(P).

The Frattini argument gives G = KG;. Thus, by 8.3.6 we may assume that
H < G;. The Frobenius group H acts on V such that Cy(Kp) = 1 and
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(|V1],|Ko|) = 1; see 8.1.12 (applied to the Frobenius complement H) and
4.1.5. Hence 8.3.5 (with A := H) yields Cy(Hp) # 1. But this contradicts
8.1.12, this time applied to the Frobenius complement Hy. O

The argument used in the proof of 8.3.7 also reveals the structure of the
Sylow subgroups of Frobenius complements:

8.3.8 Let G be a Frobenius group with Frobenius complement H. Then
the Sylow subgroups of H are cyclic or quaternion groups.

Proof. Let K be the Frobenius kernel of G, p € m(K), and P € Syl, K.
As in the proof of 8.3.7 we may assume that H normalizes V := Z(P).
Moreover, as there 8.1.12 implies that

Cy(h) =1 for 1 # h e H.

Now 8.3.2 gives the assertion. O

Exercises

Let G be a group and A a group acting on G.

1. Let G be Abelian and Ay,...,A,11 be a partition of A. Let
Gy = <C(;(A1>’ 1= 1,...,n—i—1>.

Then G/Gy has exponent < n.
2. Let G be nilpotent and (|A],|G|) = 1. If A is Abelian and r(A) > 2, then

G = H Cg<a).

aCA#

3. Let G be a solvable Frobenius group. Then the Frobenius kernel K of G is
nilpotent and F(G) = K.1°

4.  Let G be p-separable (p € P), A = (a) = C, and H := AG. Suppose that
forall z € G B
zz® -z =1,
(a) The elements y € H \ G act fixed-point-freely on every H-invariant
p’-section of G.

15Use Frobenius’s Theorem 4.1.6 on p. 80.
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(b) G is p-closed.
(¢) o(y)=p foral ye H\G.

8.4 The Decomposition of an Action

As in Section 8.3 let A be a group that acts on the Abelian group V. We now
use the fact that the set of endomorphisms together with the composition
of mappings and the addition

2P = 2P  (a, B endomorphisms, v € V)

is a ring, the endomorphism ring EndV of V.

Since for every a € A the mapping
v—>v?t (veV)

is an endomorphism of V' we can compose the endomorphisms of V' and the
elements of A in their action on V:

8 = P WP = (W9 and v = (vY)? (a€ A, B €EndV).

In other words, we identify the elements of a € A with the element of End V
induce by a.

For example, for a € A the commutator mapping
kiv e [v,a] = [a,0] = vt = 027 (v € V)
is the endomorphism a — id with Ker x = Cy (a) and
Im x = {[v,a]| veV} = [V,ad].1°
Since [V, a] is invariant under (a) and the factor group V/[V,a] is central-

ized by (a), we get
Im x = [V, (a)].

The Homomorphism Theorem gives:

8.41 V/Cy(a) = [V, (a)]. O

YRecall: [V,a] = ([v,a]| v e V).
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The next result and 8.4.5 below are corollaries of Gaschiitz’s Theorem (3.3.2
on page 73). But they have been known long before this theorem and both
have short and elementary proofs that we will give here.

8.4.2  Suppose that the action of A on V is coprime. Then
V = Cy(A) x [V, A].

Proof. By 8.2.7 (a) it suffices to show Cy(A4) N[V, A] = 1. To do this we
investigate the endomorphism

e: V-V with v~ ][] v"
z€A

For a commutator v = [w, a] € [V, 4]

VP = (w")Pw? = (H w‘”)(H w_x) =1,

TEA rcA

and thus [V, A] < Ker ¢. On the other hand, for v € Cy(A) we get
v? = vl and
A =1 = v =1

since (|A[,|V]) = 1. Hence v =1 for v e Cy(A) N [V, A]. O
As a corollary we get:

8.4.3 Suppose that the action of A on V is coprime and that A acts
trivially on Q(V'). Then A acts trivially on V.

Proof. The decomposition in 8.4.2 gives

Q(IV, A]) < Cy(4) N [V, 4] = 1,
and this implies [V, A] = 1. O
Here is another consequence of 8.4.2 that will be needed in Chapter 10:
8.4.4  Suppose that the action of the group A on the group G is coprime

and |G : Cg(A)| =p (p € P). Then [G,A] has order p and A/Ca(G) is

cyclic.
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Proof. Let Gy := |G, A]. From 8.2.7 we get
G = Gng(A) and Gl = [Gl,A],

so |G1: Cg,(A)| =p and Ca(G1) = Ca(G). If G; < G, then the assertion
follows by induction on |G|. Hence, we may assume that

(x) G =[G, Al

Let G, be an A-invariant Sylow p-subgroup of G (8.2.3 (a)). By our hy-
pothesis G = GpCg(A), and thus G = [G, A] = [Gp, A]. In particular G is
a p-group.

For G := G/®(G) we get from ()

G, A] = G.
But G is Abelian (5.2.7 on page 106), and 8.4.2 gives

Hence Cx(A) = 1, and the hypothesis |G : Cg(A4)| = p implies |G| = p.
Now 5.2.7 (b) on page 106 shows that G is cyclic, and by 8.4.3 |G| = p.
Thus, 2.2.4 on page 50 yields the assertion. O

A similar consideration as in 8.4.2 gives:

8.4.5  Suppose that the action of A on V is coprime. Let U be an A-
mvariant subgroup of V.. If U has a complement in V', then U also has an
A-invariant complement in V.

Proof. Let W be a complement of U in V; i.e.,
V=UxW.

If V = U, then clearly W is A-invariant. Thus, we may assume that V # U.
The projection

n:V—->U with wvw—u (ueUweW)
is an endomorphism of V', hence also

na: V=V with ve [] 0%
€A
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Now U4 = U implies

1

wa = [ w* * =udl for weU,

z€A

and as in 8.4.2 the coprime action of A gives
Kernga NU = 1.
On the other hand Im n4 < U and by 1.2.5 on page 13
| Ker nal [Im na| = |V].
Hence Ker 14 is a complement of U in V' that is invariant under A, as

naa = Y, (a:_lna:)a = > aa 'z Inra = a > (:Ea)_ln(:zca) = any
TcA z€A €A

for a € A7 O

The action of A on V is semisimple if every A-invariant subgroup of V' has
an A-invariant complement in V. Evidently, every irreducible action is also
semisimple.

Suppose that V' is an Abelian p-group. If V # Q(V'), then the action of A
on V is not semisimple since (V) has no complement in V. On the other
hand if V = Q(V'), then every subgroup of V has a complement in V (see
2.1.2 on page 44).'® Hence 8.4.5 gives:

8.4.6 Maschke’s Theorem.'” Suppose that the action of A on V is
coprime and V is an elementary Abelian p-group. Then the action of A on
V' is semisimple. O

The minimal A-invariant subgroups of V' are the minimal normal subgroups
of the semidirect product AV that are contained in V. Hence 1.7.2 on page
37 applies to this situation:

8.4.7 Let M be the set of all minimal A-invariant subgroups of V.. Then
the following statements are equivalent:

"The calculation carried out in the endomorphism ring.

18 According to 2.1.8 on page 46 this is the well-known fact that every subspace of a
finite-dimensional vector space has a complement.

"“Compare with [76].
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(i)  The action of A on V is semisimple.
(ii)  There exist Uy,..., U, € M such that V =U; x --- x Uy,

) V= U.
UeM

Proof. The implication (ii) = (iii) is trivial, and the implication (i) = (ii)
can be shown by a trivial induction on |V].

(iii) = (i): Let U; be an A-invariant subgroup of V. By 1.7.2 (a) on page
37 there exist Us,...,U, € M such that V = U; x Uy x --- x U,. Hence
Us x --- x U, is an A-invariant complement of U7 in V. O

The semisimple action of A on V induces a semisimple action of A on each
A-invariant subgroup of V' (Exercise 2). But if we restrict this action to
subgroups of A the situation gets more complicated. For normal subgroups
the resulting action is again semisimple, but not for subgroups in general
(Exercise 1).

We discuss this elementary fact and suggest that the reader compare the
following with the notion of an A-composition series (of V') introduced in
1.8 on page 39.

From now on we assume that V # 1. As above, M is the set of all minimal
A-invariant subgroups of V. For U, W € M, define

U~W <= U is A-isomorphic to W.

Then ~ is an equivalence relation on M. The equivalence classes we denote
by Mqy,...,. M,. For i1 =1,...,n

Vi:= ]I UandVy:= [[ Vi
UeM; =1

The subgroups V;, ¢ = 1,...,n, are the homogeneous A-components of
V. From 1.7.2 on page 37 and 8.4.7 we get:

8.4.8 (a) Vj is the direct product of subgroups from M; (i=1,...,n).

(¢)  The action of A on Vy is semisimple. O
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By 8.4.7 the action of A on V is semisimple if and only if V = V4.

8.4.9 Clifford’s Theorem.?’ Let H be a group that acts on V and A
be a normal subgroup of H. Suppose that the action of H on V is semi-
simple. Then also the action of A on V is semisimple. Moreover, if H acts

irreducibly on 'V, then H acts transitively on the homogeneous A-components
of V., and ACg(A) is contained in the kernel of this action.

Proof. With respect to the action of A on V' we use the notation introduced
earlier. Then H acts on M since A is normal in H. We show that this
action preserves the equivalence relation ~ on M:

Let U/W € M such that U ~ W and h € H. By definition there exists
an A-isomorphism ¢: U — W. Now

gOh — h_l(ph 21
is an isomorphism from U” in W", and A" = A implies

o"a = hlpha = h_lgoah_lh = h_lah_lgoh = ah7toh = ayh.

Hence ¢" is an A-isomorphism and U" ~ Wh,

We have shown that H acts on the equivalence classes of ~ and thus on
the set of homogeneous A-components Vi, ..., V,,. The kernel of this action
contains ACH(A).

n
The subgroup Vp = [] V; is H-invariant, and every H-invariant subgroup
i=1
of V' contains some element of M. Now the semisimple action of H on V
gives V =1/, and the action of A on V' is semisimple (8.4.7).

Suppose that H acts irreducibly on V. Then V = (Vi#), and 8.4.8 (b)
yields
Vil ={v,...,V,}. O

Exercises

Let A be a group, which acts on the elementary Abelian p-group V.

1. Suppose that for every U < A the action of U on V is semisimple. Then
p & m(A/Ca(V)).

20Compare with [39].
21The product is taken in End V.
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2. Suppose that the action of A on V is semisimple and W is an A-invariant
subgroup of V. Then the action of A on W is also semisimple.

3. Let Se€Syl,A and L I A If [Cy(S), A] = 1, then also

[Cy(S N L)L = 1.

4. Let V = (vy,...,v,) be an n-dimensional vector space over Fy. The sym-
metric group S,, acts on V according to

v;9 1= v (gESn, zE{l,,n})

For which n is this action semisimple?

8.5 Minimal Nontrivial Action

In this section we investigate a situation that frequently occurs in proofs by
induction: A group A acts nontrivially on a group G but trivially on each
proper A-invariant subgroup of G. If in addition the action of A on G is
coprime, the structure of G' can be described fairly well. Clearly in this case
G is a p-group since A normalizes a Sylow p-subgroup for every p € 7(G)
(8.2.3 on page 185). The analysis of this situation—in the literature called
the Hall-Higman-reduction—is given in 8.5.1.%2

The second result of this section, (8.5.3), is a generalization of the P x Q-
Lemma, which as the P x Q-Lemma itself is due to Thompson. Our proof
follows Bender, who uses a nice idea that goes back to Baer.

Apart from these two theorems some more special results are proved that
will be used later.

For practical reasons we formulate the Hall-Higman-reduction slightly more
generally:

8.5.1 Let B be a group that acts on the p-group P. Suppose that B
contains a normal p'-subgroup A that acts nontrivially on P but trivially on
every proper B-invariant subgroup of P. Then P = [P, A], and P is either
elementary Abelian or a special p-group. Moreover, B acts irreducibly on
P/®(P). If in addition p # 2, then 2P =1 for all z € P.

*2See [67].
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Proof. Since A < B the subgroup [P, A] is B-invariant, and by 8.2.7
[P, A, A] = [P, A]. This gives

(1) P = [PA]

Every characteristic subgroup C of P is B-invariant. Hence either [C, A] =
1 or C'= P, in particular

[P/ A] = 1 = [&(P), Al

Let P := P/P’. The coprime action of A on P and 8.4.2 imply

P = [P, A] x C5(A) = [P,A] x Cp(A)

and thus C5(A) =1 by (1). Now the trivial action of A on every proper
B-invariant subgroup shows that B acts irreducibly on P. In particular,

C' =1 for every proper characteristic subgroup C of P. Hence P’ < ®(P)
implies

P = &(P).

If P’ =1, then P is elementary Abelian and we are done. Thus, we may
assume now that P’ # 1. Then Z(P) # P and Z(P) < P’ since Z(P)
is characteristic in P. The inclusion P’ < Z(P) follows from (1) and the
Three-Subgroups Lemma:

[P,P Al =1 =[P, A,P]

and thus
[P,P’] = [P,A,P'] = 1.

This gives Z(P) = P’.
As P/Z(P) is elementary Abelian, for every z,y € P
1.5.4
1= [z"y] =" [z, 9"

Hence Z(P)= P' = Q(Z(P)), and P is a special p-group.
Let p # 2. Then 5.3.4 (a) on page 111 yields

[z,a]P = (z712%)P =27 P(aP)? = z7PaP =1

for x € P and a € A, so P = [P,A] = Q(P). Hence 5.3.5 on page 112
applies, and we are done. O

The following result deals with a situation that will occur in Chapter 11:
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8.5.2 Let A be an Abelian p-group that acts on the p'-group G, and set
Ap = CA(G). Suppose that |G, A] # 1, but [U, A] =1 for every A-invariant
subgroup U # G.

(a) r(A/Ap) =1.

(b)  If the semidirect product AG acts on the elementary Abelian p-group
V' such that Cq(V) =1, then AG/Ay acts faithfully on Cy(Ay).

Proof. (a) As already mentioned in the introduction of this section, G is a ¢-
group (g € P). By 8.5.1 and 8.2.9 (a) the factor group A/Aj acts irreducibly
and faithfully on G/®(G), so (a) follows from 8.3.3.

(b) Set K := Cuq(Cyv(Ag)). The P x @Q-Lemma (8.2.8, with P = Ap)
shows that K is a p-group. As Ay < K and G is a p/-group, we get that
K = Ayp. O

An important generalization of the P x () -Lemma for p # 2 is the following
result:

8.5.3 Theorem (Thompson [93]). Let p # 2 and A be the semidirect
product of a p-subgroup P with a normal p’-subgroup Q). Suppose that A acts
on a p-group G such that

() Ca(P) < Ca(Q).
Then @ acts trivially on G.

Proof (Bender [27]). We may assume that [G,Q] # 1. As every proper
A-invariant subgroup of G also satisfies (') (in place of G), we may further
assume by induction on |G| that @ acts trivially on every such proper
subgroup. Hence 8.5.1 yields

G =1[G,Q] uwnd G < Z(G).

We first treat the case G’ = 1: Then 8.4.2 gives C(Q) = 1 and thus also
Ca(P) =1 by hypothesis (). Now 8.1.4 implies G = 1, which contradicts

G, Q] # 1.

We now use an idea of Baer?? to show that the case G’ # 1 already follows
from the Abelian case. This is done by defining an addition on the set G

*3Bender applied this idea to this situation ([24], [27]).
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that turns it into an Abelian group and that is compatible with the action
of A. Then the result follows from the case just treated.

As G has odd order, we have (x2) = (x) for every x € G. In particular, for

x,y €G

2

? =y? = 2%y ?

—(zy NP =1l=ay =1

and thus
a— y2 — x =y.

Hence, for every g € G there exists a unique = € G such that z? = g. Set
Vg = .
Then the following hold:

9.h€Z(G) = /g,Vhe Z(G) and Vgh = \/gVh;
geG, acA = /7%= 9%
geG = gl /g=+g L

We now define an addition on the set G by

(+) g+h = ghvIh,gl
The commutator identity [g, k]! = [h, g] implies
g+h = ghy/[h,g] = hglg,hl\/[h, g] = hglg, h]\/Ig, h]~' = hg+/]g, h]
= h+g,

so this addition is commutative.

The proof of the associativity of + uses the fact that G’ < Z(G): For
g,h, f € G (1.5.4 on page 25) yields

[f,g+h] = [f,gh] = [f,gl[f,h] and
[h+ f,g] = [hf,g] = [h,gllf, gl

This shows that
(g+h)+f = ghfIhglVIf glVIf b = g+ (B + f).

Evidently, 1 is the identity of G(+) and —g := ¢! is the inverse of g (with
respect to +). Hence G(+) is an Abelian group.
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The group A acts on the Abelian group G(+) since
<g+h)a — gaha [ha’ga] — ga_I_ha’

where the action of A on the set (G is as before. Now the above-treated
Abelian case shows that ) acts trivially on G. O

The following two results are used in the proof of 8.5.6, and this result is
used in Section 11 to prove Glauberman’s Signalizer Functor Theorem.

8.5.4  Let P be a special 2-group such that Q(P) = Z(P) and |Z(P)| = 4.
Then 23 <|P/Z(P)| < 2%,

Proof. Set Z := Z(P) and 2" := |P/Z|. Since P is special we have
P’ = Z = ®(P), and by our hypothesis P’ = Q(P) and |P'| = 4. In
particular, every element in P\ Z has order 4. If n = 2, then there exist
z,y € P such that P = (x,y,Z(P)). Hence P' = ([z,y]) = Cy which
contradicts |P’'| = 4. Thus we have n > 3.

Let a € P\ Z and set
C := Cp(a), C = C/{a).

Note that [Z| = 2 since 1 # a? € Z. Pick o € C such that Z is an involution.

In the case T € Z the element x has order 4 and z? € (a), i.e., 22 = a®.

Hence o(xa) = 2, which contradicts Q(P) = Z and za & Z.

We have shown that Z is the unique subgroup of order 2 in C. Thus, by
5.3.7 on page 114 either C is cyclic (of order < 4) or a quaternion group of
order 8. This gives

IC| € {8, 16, 32}.

On the other hand, the conjugacy class a® is contained in aZ since (a)Z
is normal in P. It follows that

P/C] = |a”] < |aZ]| = 4

and thus |P| <27, ie., |P/Z| < 2°.

In the case |P/C| < 2 we get |P| < 25, so |P/Z| < 2* and we are done.
Hence it suffices to show that the assumption

(+) |P:Cp(a)l =4 forall a€ P\ Z and |P/Z| = 2°
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leads to a contradiction. Let z € Z# and P := P/(z).2* Then

®(P) =P = Z =0,
If Z = Z(P), then P is extraspecial and |P/Z| a square (5.2.9), which
contradicts (+).

Assume that Z # Z(P). Then there exists a € P\ Z such that a € Z(P),
SO
{z7'2"| 2 € P} = {1,2}.

Now 8.1.7 yields |P : Cp(a)| = 2, which again contradicts (+). O

8.5.5 Let (d) be a cyclic 3-group that acts faithfully and fixed-point-freely
on the 2-group P. Suppose that

(+) r(V) < 2 for every Abelian subgroup V' of P.
Then o(d) = 3.

Proof. Set o(d) = 3". By induction on |P| we may assume that (d%) acts
trivially on every proper (d)-invariant subgroup of P. Hence 8.5.1 shows
that (d) acts irreducibly on

P .= P/®(P),

and either P is elementary AbeEan or a special p-group. Moreover, by 8.2.9
(a) (d) also acts faithfully on P. Hence Cp(x) =1 for all 1# x € (d). In

particular, every orbit of (d) on P* has length o(d) = 3". This gives

(1) IP| =1 (mod 3").

As Z(P) is elementary Abelian, the fixed-point-free action of (d) gives
|Z(P)| > 4. Now (+) implies

(2) |Z(P)] =4 and Q(P) = Z(P).

The case P’ =1 gives |P| =4, and o(d) = 3 since (d) acts faithfully on
P.

In the remaining case P is special and satisfies the hypothesis of 8.5.4 (see
(2)). It follows that |P| = 23 or |P| = 2% Hence (1) gives |P| = 2* and
n = 1. O

247jlde instead of bar convention.
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8.5.6 Let G be a group and 1 # d € G a 3-element. Suppose that the
following hold:

(1) Ca(02(G)) < 02(G).

(2)  There exists an element of order 6 in G.

(3)  There exists a (d)-invariant elementary Abelian 2-subgroup W in G
such that
Cw(d) =1#W.

Then G contains an elementary Abelian subgroup of order 8.

Proof. Set

P = 0y(G), Z:=QZ(P)) and C := Cg(Z).
We assume that G is a counterexample, so
(+) r(V) < 2 for every Abelian 2-subgroup V of G.

This shows that |Z| < 4 and |[WCz(W)| < 4. As d normalizes W and Z
and acts fixed-point-freely on W, we get

W =2=Cy x Cy and Cgz(d) = 1.

Let D €SylsG such that d € D and pick x € D. If [Z,z] # 1, then
Cz(x) =1 since |Z] =4, and (+) yields Cp(z) = 1. Hence P and x satisfy
the hypothesis of 8.5.5. We get

(x) Cp(x) =1 and o(x) =3 forall x € D such that [Z,x] # 1.

Assume first that D is cyclic. Then by (x) D = (d) = (3, and hypothesis
(2) together with Sylow’s Theorem shows that there exists an involution
t € G such that [¢t,d] = 1. Since Z(t) is nilpotent we get |[Z,t]| <2 (5.1.6
on page 101). Now [Z,t] = 1 follows since [Z,t] is (d)-invariant. Moreover,
t is not contained in Z, so Z(t) is elementary Abelian of order 8. This
contradicts (+).

Assume now that D is not cyclic. Then Cp(Z) is a nontrivial normal
subgroup of D. Let b be an element of order 3 in Cp(Z) N Z(D) and
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E := (b,d). By (x) E is an elementary Abelian subgroup of order 9. Hence
8.3.4 gives
P = (Cp(z)| = € E?).

In addition, again by (x), Cp(x) =1 for all z € E'\ (b). Now P = Cp(b)
follows, which contradicts hypothesis (1). O

Exercises

1. Let G be a group. Suppose that every proper subgroup of GG is nilpotent,
but not G. Then there exist different primes p,r and a p-element a € G
such that

G = F(G){(a) and F(G) = (a’) x R,

where R is an elementary Abelian or special r-group.

8.6 Linear Action and the Two-Dimensional
Linear Groups

In this section we introduce the action of a group on a vector space. As
examples of such an action we present the groups GLa(g) and SLa(q), but
we also need an important property of SLa(g) in the next chapter.

Let p be a prime. It is well known that (up to isomorphism) for every power
q¢=p" (meN)
there exists exactly one finite field F, with |F,| = ¢. We set
K = F,.

The additive group K(+) is an elementary Abelian p-group and the multi-
plicative group K* a cyclic group; see the remark after 8.3.3.

Let V be an n-dimensional vector space over K. Then the additive group
V(+) is an elementary Abelian p-group of order ¢".

Let GL(V) be the group of automorphisms of the vector space V; i.e.,
GL(V) = {x € AutV(+) | 2" = (Av)® forall v € V and )\ € K}.

A group G is said to act on the vector space V if GG acts on the Abelian
group V(+), so O; — O3 hold, and in addition:
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Oy (W)P=x9 ANeK,veV, ged).

Any such action gives rise to a homomorphism from G into GL(V'), which
describes the action of G on V.

The action of G on V is irreducible if V # 0 and 0 and V' are the only
G-invariant subspaces of V.2°

8.6.1 Schur’s Lemma. Suppose that G acts irreducibly and faithfully
on the K-vector space V. Then the following hold:

(a) Z(G) is a cyclic p'-group.

(b) If |Z(G)| =n such that n|(q—1), then there exists a monomorphism
v: Z(G) — K* such that

v¥ = 2%v forallze Z(G), veV2

Proof. Let Z := Z(G) and z € Z#. Then Cy(z) is a proper G-invariant
subspace of V. The irreducible action of G gives Cy/(z) =0 for all z € Z7#,
Now (a) follows from 8.3.2 and 8.1.4.

(b) For A € K* the mapping
zZ: V=V with v— v

isin Z(GL(V)), and M :={z)| A € K*} is a subgroup of Z(GL(V)) that
is isomorphic to K*.

As G acts faithfully on V| this action is described by a monomorphism of G
into GL(V). After identifying the elements of G with their images in GL(V)
we may regard G and thus also Z as subgroup of GL(V). Then H := MZ
is an Abelian subgroup of GL(V') which is centralized by G. The irreducible
action of G on V yields:

Cy(h) = 0 for all h e H”.

As seen above, this shows that H is cyclic. In particular, H contains exactly
one subgroup of order |Z| (1.4.3 on page 22). Moreover, since n divides | K*|,
this subgroup is in M (= K*), and Z < M follows. O

?5In general this does not imply an irreducible action of G on V(+).
262 acts by scalar multiplication.
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It should be pointed out that decomposition theorems similar to those of
Section 8.4, in particular Maschke’s Theorem and Clifford’s Theorem, can
be proved for groups acting on vector spaces using the same arguments as
in Section 8.4. Of course, now irreducibility and semisimplicity refers to
subspaces rather than subgroups.

It is well known that the mapping
det: GL(V) —» K*

that maps every element x € GL(V') on its determinant detx is an epi-
morphism. Hence

SL(V) := {z € GL(V) | detz =1}
is a normal subgroup of GL(V') such that
GL(V)/SL(V) = K*.
Since (¢ — 1,p) = 1 all p-elements of GL(V) are contained in SL(V'); we

will use this fact frequently.

With respect to a fixed basis vy,...,v, of V, every = € GL(V) corresponds
to an invertible matrix

where the \;; € K are determined by the equations
n

’in: Z)\ijvj, izl,...,n.
i=1

The mapping = +— A(x) is an isomorphism of GL(V') into the group
GL,,(¢q) of all invertible n x n-matrices over K. In particular SL(V') is
mapped onto the group SL,(¢q) of all matrices with determinant 1.

Frequently we will describe the elements = € GL(V') by the matrices A(x)
(for a fixed basis of V') writing

Despite the fact that most of the following results can easily be generalized
to n-dimensional vector spaces, we will from now on assume that V is a
2-dimensional vector space over K.
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The order of GL(V) is equal to the number of ordered pairs (v, w), where
v,w is a basis of V. Hence

| GLa(q)| = |GL(V)| = (¢* = 1)(¢* — q)

and
|SLa(q)| = [SL(V)| = (¢ —1)q(g +1).

For A € K* the scalar multiplication by A
z: V=V with v v

is an element of Z(GL(V)), and

L = A0
AT lo o
with respect to every basis of V. We set

Z ={an| Ae K'} (< Z(GL(V))),

clearly Z is isomorphic to K*. Moreover z) € SL(V) only if A = +1.

Let
Z = Z_1.

If p=2 then z =1, and if p # 2 then z is an involution in SL(V).

8.6.2 Let p# 2. Then z is the unique involution in SL(V).

Proof. Let t € SL(V) be an involution. Then
v+ vt e Cy(t)

for all v e V.

If Cy(t) =0, then v' = —v and thus ¢t = z. Assume that Cy(¢) # 0. Then
there exists a basis v, w of V with v € Cy(t), and with respect to this basis

(1)

But now dett = —1, which contradicts p # 2 and ¢ € SL(V). O
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Let V#:={veV|v#0} and v € V#. By
Kv := {\| € K}

we denote the subspace of V' generated by v. Let v,w be a basis of V; i.e.,
Kv # Kw. We set:?"

Sw) = {zeCGLV)| (Kv)* = Kuv}
= {(il (;1)‘51,526}(*, )\GK},
Pw) = {zeGLV)|v* =uv}
= {(i\ 52 ‘52€K*, )\EK},
Dw,w) = S() N Sw) = {(% g)‘él,égeK*},
Sw) = S(v)ﬂSL(V)E{(f\ 501>’5€K*, )\GK},
P) = ﬁ(v)ﬂSL(V):{(i ?)‘AGK}
D(v,w) = f)(v,w)mSL(V)z{(g 591>‘56K*}.

It is easy to see that all the above sets are subgroups of GL(V). We now
discuss their structure:

A~

8.6.3 (a) D(v,w) 2 K* x K* and D(v,w) = K*. In particular
D(v,w) is a cyclic group of order q — 1.

(b) Pw) = K(+).

(¢) P(v) is a normal subgroup of §(/1\)), and S(v) (resp. S(v)) is a
semidirect product of P(v) with D(v,w) (resp. D(v,w)). In par-
ticular, S(v) and S(v) are solvable groups.

(d)  Cpw(z)=1 and [P(v),z] = P(v) for & € D(v,w)\ (z). **

2TWith respect to the basis v, w.
*Hence S(v)/(z) is a Frobenius group; see 8.1.12 on p. 182.
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Proof. Most of the assertions follow directly from the matrix representation
given in the definition of the subgroups. For (c) note that P(v) is the kernel
of the action of S(v) on Kv. Hence P(v) < .S(v) and P(v) < .5(v).

Claim (d) can be verified using

(3 G5 =)

note here: § 2 =1 <= § = +1. O
8.6.4 [V,P(v)]=Kv and [V,P(v),P(v)] =0 for v e V#.

Proof. The matrix representation of P(v) shows that P(v) acts trivially
on V/Kwv. Hence
0 £ [V,P()] C K,

and [V, P(v), P(v)] =0 follows. Since [V, P(v)] is a subspace of V' we also
get [V, P(v)] = Kwv. O

The next result describes the Sylow p-structure of GL(V') and thus also of
SL(V).

8.6.5 (a) Syl,GL(V)={P(v)|veV#} and
P(v) = P(u) <= Kv = Ku.
In particular |Syl, GL(V)| = ¢+ 1.
(b)  Ner)(P@) = S(v), ve V.
(¢) P)NPu)=1if Kv# Ku (v,ue V7).

(d)  Syl,GL(V) = {P(u)} U{P(v)*| x € P(u)} for v,u € V# such that
Kv # Ku.

Proof. Clearly P(v) (v € V#) is a Sylow p-subgroup of GL(V) since
|P(v)| = g = p™. Conversely, a Sylow p-subgroup P of GL(V) acts on the
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set V. Since 0 =0, 3.1.7 on page 59 shows that there also exists v € V#
such that v = v. This implies P < P(v) and thus P = P(v).

Let v,u € V#. Since v,u is a basis of V if Kv # Ku, we get
P(v) # P(u) <= Kv # Ku < P(v) N P(u) = 1.
This implies (c¢) and also (a); note here that q;_—_ll = ¢+ 1 is the number of

subspaces Kv, v € V#. Since P(v)* = P(v*), x € GL(V), we also get (b).

(d) P(u) acts on Syl, GL(V)) by conjugation. If P(v)* = P(v), z € P(u),
then z =1 follows from (b) and (c). Hence there exist ¢ = |P(u)| pairwise
distinct Sylow p-subgroups P(v)*, x € P(u). Together with P(u) there
are ¢+ 1 Sylow p-subgroups, and the assertion follows from (a). O

Next we collect some properties about the relations between the above in-
troduced subgroups. As before v, w is a basis of V' and with respect to this
basis t € SL(V') such that
(0 -1
‘= ( 0 ) .

8.6.6 (a) ForueV )\ (KvUKuw)

~

S(v) N S(w) N S(u) = Z.
In particular Z(GL(V))=Z and Z(SL(V)) = (2).
(b)  Nerw)(D(v,w)) = (¢)D(v,w) or q =2 and D(v,w) = 1.
() Nspoy(D(v,w)) = {t)D(v,w) or ¢ <3 and D(v,w) = (z).

(d) [D(v,w),z] = D(v,w) for all x € lA?(v,w)t.

(e)  Cary(a) =Pw)Z(GL(V)) for all a € P(v)*.

Proof. (a) Since R R N
Z < Sw)n Sw)n S(u) == H
<

it suffices to show that H < Z. Let A1, Ao € K* such that

U = A\v + lw,



8.6. Linear Action and the T'wo-Dimensional Linear Groups 217

and let h € H. Then there exist w1, 2, u3 € K* such that o = pyo,
wh = pow and u” = psu. It follows that

paAv + pzdow = pzu = u = Mo" 4+ Aw” = Ao + Aappw
and thus, since v,w is a basis,
psAr = Apr and  pgde = Agus.

Hence pz = p1 = pg and h =z, € Z.

~

(b) and (c) For = € Ngpv)(D(v,w))

A~ A~

D(v,w) = (D(v,w))* = D(v*,w®).

Now (a) implies {Kv, Kw} = {Kv®, Kw"} or ﬁ(v,w) = Z(GL(V)). In
the first case = ¢ D(v,w) yields

(Kv)* = Kw, (Kw)® = Kuv,

and tx € ﬁ(v, w). In the second case

D(v,w) & K* x K* and Z(GL(V)) & K*
implies ﬁ(v,w) =1 and g = 2.
With D(v,w) in place of D(v,w) the case D(v,w) = Z(SL(V)) gives
¢—1=|Dw,w)| = |(z)] <2
and thus ¢ < 3.

(d) Since D(v,w) is Abelian we may assume that z = ¢. For the element

(6 0
d:<052>
o0 0 1 5, 0 0 —1
—-1,-1 — 1 1
o= () (5 0) (5 s ) (09

_ (6t 0,
B 0 4661 )

and (d) follows.
(e) Clearly Z(GL(V))P(v) < Cgrv)(a) since P(v) is Abelian. On the

other hand Cy(a) = Kwv, and thus Cgr,v(a) < S(v). Now (e) follows from
8.6.3 (c) and an elementary calculation. O



218 8. Groups Acting on Groups

8.6.7 Let P, Py be two different Sylow p-subgroups of GL(V'). Then

SL(V) = (P, P2).

Proof. According to 8.6.5 (a) there exists a basis v,w of V such that
Py = P(v) and P, = P(w). By 8.6.3 (c) and 8.6.5 (b) Ngp(P(v)) =
P(v)D(v,w), and by 8.6.5 (d)

G = (P, P) (< SL(V))

is the group generated by all Sylow p-subgroups of SL(V'). The Frattini
argument implies

SL(V) = G D(v,w).

Since D(v,w) is Abelian, ¢ acts trivially on SL(V')/G. Hence 8.6.6 (d) shows
that D(v,w) < G and G = SL(V). O

If x € SL(V) and v € V¥ such that v* = v, then z is a p-element (8.6.3
(b)). This shows:

8.6.8 Let R be a p'-subgroup of SL(V). Then Cy(x) = 0 for all x €
R7. m

8.6.9 Let r € P, r# p, and R a Sylow r-subgroup of SL(V). If r # 2,
then R is cyclic, and if r = 2, then R is a quaternion group.

Proof. Because of 8.6.8 we can apply 8.3.2. Then R is cyclic or a quaternion
group. It remains to exclude the case where r = 2 and R is cyclic. In this
case SL(V') has a normal 2-complement (7.2.2), and this 2-complement con-
tains all the Sylow p-subgroups of SL(V'). Now 8.6.7 and R # 1 contradict
each other. O

SL2(2) is a non-Abelian group of order 6, and thus isomorphic to Ss.

SLy(3) is a group of order 24 that is not 3-closed (8.6.5). A Sylow 2-subgroup
() is a quaternion group (8.6.9), and its center has order 2 (8.6.6 (a)). Hence
4.3.4 on page 90 shows that @ is a normal subgroup of SL(3).

We sum up:
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8.6.10 SLy(2) and SL2(3) are solvable groups. The group SLa(2) is
isomorphic to Ss, and the group Sla(3) is a semidirect product of a cyclic
group of order 3 with a quaternion group of order 8 that is not direct. Con-
versely, every such semidirect product is isomorphic to SLo(3).

Proof. Only the last statement requires a proof. Let A, B be two groups
of order 3, which act nontrivially on a quaternion group (Js. It suffices to
show

AKQggBKQS.

Both groups act faithfully on ()s and thus can be regarded as subgroups
of Aut@g. Now 5.3.3 on page 110 shows that A and B are conjugate in
Aut Qg, and the corresponding semidirect products are isomorphic. O

Assume now that ¢ > 4. Then D(v,w) # (z), and for x € D(v,w) \ (z) we
get from 8.6.3 (d)

P(v) = [P(v),z] < SL(V).

Hence, every Sylow p-subgroup of SL(V) is contained in SL(V)’. Now 8.6.7
gives:

8.6.11 SL(V) is perfect for q > 4. O

Since GL(V)/SL(V) (= K*) is Abelian, the commutator group of GL(V)
is contained in SL(V'). Hence, For ¢ > 4 8.6.11 implies

GL(V) = SL(V).%

The next statement about the structure of SL(V) will be of relevance in
the next chapter.

8.6.12 Let p # 2. Suppose that a is a p-element and R an {a)-invariant
p'-subgroup of SL(V) such that 1 # [R,a]. Then p =3, R is a quaternion
group of order 8, and R{a) = SLy(3).

29This is also true for ¢ = 3.
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Proof. By 8.2.7 on page 187 we have

R = [R,a|Cgr(a) and [R,a,a] = [R,a].
In addition, 8.6.6 (e) gives Cr(a) < (z).
We show:

(1) [R,a] is a quaternion group.

(1) implies that (z) = Z([R,a]) (8.6.2) and thus R = [R,a]. Hence R
is a quaternion group (Q2n. For n > 4 R possesses a cyclic characteristic
subgroup of index 2; and a acts trivially on R (8.2.2 (b) on page 184). Hence
R = g, and the assertion follows from 8.6.10.

We now prove (1) by induction on |R|. We may assume that R = [R,d]
and, because of 8.2.3 on page 185, also that R is an r-group, r a prime
different from p.

If R is not cyclic, then (1) follows from 8.6.9 (b). We will show that the
other case leads to a contradiction:

Since R = [R,a] the element a acts as an automorphism of order p on the
cyclic group R. By 2.2.5 on page 51

(2) p divides (r —1).

Hence r # 2, and

(3) either r divides (¢ —1) or r divides (¢+1)

since |SL(V)| = (¢ —1)q(q¢+1). If ¢ = p, then (2) and (3) contradict each
other.

The case r|(q— 1) is also elementary. By Sylow’s Theorem we may assume
that R < D(v,w), v,w a basis of V (8.6.3 (c)). Then Kv and Kw are the
only R- invariant 1-dimensional subspaces of V' (8.6.6 (a)). Hence R* = R
shows that (a) is either trivial or transitive on the set {Kv, Kw}. This
contradicts a # 1 (8.6.5 (c)) and p # 2, respectively.

We now show that the case r|(q + 1) follows from the case just treated.
Note first that
r divides (¢* — 1).

Next we use from the theory of finite fields the well-known fact that there
exists a field extention L of K =T, such that L = . This shows that

SL(V) 2 SLy(q) < SLa(¢%) = SL(V),
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where V is a 2-dimensional vector space over L. Hence R(a) is isomorphic
to a subgroup of SL(V). Since r|(¢? — 1) we are back in the previous case,
and the contradiction follows as there. O

8.6.13 Let p# 2 and G a subgroup of SL(V') that is not p-closed. Then
the Sylow 2-subgroups of G are quaternion groups.

Proof. Assume that G < SL(V) is a minimal counterexample. As O ()
is p-closed if and only if G is p-closed, we get

() or'(G) = G.

Using 8.6.9 we may assume that for all prime divisors r # p of |G| the
Sylow r-subgroups of G are cyclic. Let r be the smallest such divisor. Since
G has no normal p-complement by ('), we get from 7.2.1 for R € Syl, G

Ca(R) # Ng(R).

Hence, there exists a prime divisor s of |Ng(R)| (and thus of |G|) and an
s-element a € Ng(R) \ Cg(R). Since R is cyclic 2.2.5 implies

s divides r — 1.

The minimality of r yields s = p. But this contradicts 8.6.12 since R is
cyclic. O

A well-known theorem of Dickson shows that a group G as in 8.6.13 possesses
a subgroup isomorphic to SLa(p).3°

Let Q be the set of 1-dimensional subspaces of V', i.e.,
Q= {Kv|v e V#L3
Then GL(V) acts on
Kvw— Kv*, x e GL(V),
S(v) is the stabilizer of the point Kwv,

D(v,w) = S(v) N S(w) (Kv # Kw)

30Gee [6], chap. 8, or more modern [12], p. 44.
31Q) is the 1-dimensional projective space, the projective line over K.
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is the stabilizer of two points, and

8.6.6(a

Z = Z(GL(V)) ) | Ae K}

is the kernel of this action. Hence
(2) = Z n SLV) *%29 ZsLv))

is the kernel of the action of SL(V) on €.

Moreover P(v) is a normal subgroup of S(v) that acts regularly on Q\{Kv}
(use |P(v)| = ¢ = [Q\{Kv}| and 8.6.5 (c)). As P(v) < SL(V), both groups
GL(V) and SL(V) are 2-transitive on 2. The subgroup D(v,w)/Z has
order ¢ — 1 and acts regularly on Q\ {Kv, Kw} (8.6.6 (a)). Thus, the
action of GL(V') on 2 is 3-transitive.

If p=2, then SL(V) acts faithfully on {2 since z = 1. Hence, D(v,w) is
regular on Q\ {Kv, Kw}, and in this case also SL(V) is 3-transitive on €.

If p#2,then z # 1 and D(v,w)/(z) cannot be transitive on Q\{Kv, Kw}.
Consequently, in this case SL(V') is not 3-transitive on €.

Our discussion also shows that the group S(v)/Z (resp. S(v)/(z)) acts as a
Frobenius group on Q\{Kv}, where P(v) (= K(+)) is the Frobenius kernel
and D(v,w)/Z (=2 K*) (resp. D(v,w)/(z)) a Frobenius complement.

It should be pointed out that by 8.6.5 (a) the mapping
p: Q@ — Syl, GL(V)  such that Kwv P(v)

is a bijection with
(Kv)*)? = ((Kv)")*.

Hence the action of G' on  and on Syl, GL(V) (by conjugation) are equi-
valent.

The factor groups
PGL(V) := GL(V)/Z(GL(V)) and PSL(V) := SL(V)/Z(SL(V))

are the 2-dimensional projective linear group and the special projec-
tive linear group, respectively.

Similarly one defines

PGLy(q) := GLa(q)/Z(GLa(q)) and PSLa(q) := SLa(q)/Z(SLa(q)).*?

32 A list of all subgroups of PSLa(q) was first given by Dickson ([6]); see [13], I1.2.8.
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8.6.14 Theorem. PSL(V) is a non-Abelian simple group for every
q=>4.

Proof. Let G := SL(V), and let N be a normal subgroup of G such that
(z) < N < G.

It suffices to show that N = G. As G is 2-transitive on €2, by 4.2.2 on page
85 and 4.2.4 on page 86 N is transitive on 2. Hence the Frattini argument
gives G = N S(v), in particular

G/N = S(v)/S(v) N N.

The solvability of S(v) (8.6.3 (c)), and thus of G/N yields either G/N =1
or (G/N) # G/N. In the first case we are done, in the second case G' # G

(1.5.1 on page 24), which contradicts 8.6.11. O
Exercises

2. Ag and PSLy(9) are isomorphic.

3. PSL3(9) has a unique conjugacy class of involutions.

4. Every nonsolvable group of order 120 is either isomorphic to S5, SLa(5) or

A5 X CQ.

5. For ¢q=3 (mod38) and ¢=5 (mod 8) the Sylow 2-subgroups of PSLy(q)
are isomorphic to Cy x C5.33

33By a theorem of Gorenstein-Walter these are the only simple groups having a Sylow
2-subgroup isomorphic to Cy x Ca; see the Appendix, p. 369.
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Chapter 9

Quadratic Action

9.1 Quadratic Action

In the following p is a prime and G a group that acts on the elementary
Abelian p-group V. An element a € G acts quadratically on V if

V,a,a] = 1.

This means that a and thus also (a) acts trivially on [V,a] and V/[V,a].
In particular (a)Cq(V)/Cq(V) is a p-group (see 8.2.2 (b) on page 184).

In the endomorphism ring of EndV the quadratic action of a gives
ple=Dle=1) — 1 forall v eV,

i.e., (a—1)? = 0.! Hence either a acts trivially on V or possesses a quadratic
minimal polynomial.

The group G acts quadratically on V' if
V.G,G] = 1.

In the following examples the action of G on V' is quadratic:

(a) G acts trivially on V.
(b) |G| =2=p: Then for a € G and v eV

[v,a] = [v,a]”! = [v,q].

'Since we write V multiplicatively the zero of End V' maps every element of V to 1y.

225
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(¢) G is p-group such that |V/Cy(G)| = p; see 8.1.4 on page 177.

(d) V is the additive group of a 2-dimensional vector space W over Fpm,
and G is a Sylow p-subgroup of SL(W); see 8.6.4 on page 215.

(e) V and G are normal subgroups of the group H, and G is Abelian;

V,G.G] = [[V,G],G] < [V NG,G] = 1.

The action of G on V is p-stable if for all a € G:
Via,al =1 = aCa(V) € Op(G/Ca(V)).

For p = 2 every involution acts quadratically on V' (Example (b)). Thus,
p-stability is only interesting for p # 2.

We first collect some elementary properties:

9.1.1  Suppose that G acts quadratically on V.
(a) [v,a"] =[v" a] =[v,a]™ forall veV, a€ G, neN.
(b) V| < |Cv(a)]? forall a €@,

(¢) G/Cq(V) is an elementary Abelian p-group.

Proof. (a) follows from 1.5.4 on page 25 since [v,a]* = [v,a] for a € G.
Now vP =1 and (a) give [v,aP] = 1; in particular

al € Cg(V) forall a €.

Moreover, the quadratic action of G and the Three-Subgroups Lemma imply
[V,G'] = 1. Hence G/C;(V) is Abelian, and (c) holds.

Finally by 8.4.1 on page 197
V/Cv(a) = [V,a] < Cy(a),

and (b) follows. O

The next example shows that for p > 2 elements of order p need not act
quadratically.
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Let G = S; and V be a 4-dimensional vector space over F3 with basis

v1,...,04. Then

9 ._
vy =

vig, i=1,....4 (g€@G)

defines a faithful action of G on V. By 9.1.1 (c) only 3-elements of G can
act quadratically on V.

Let ¢ := (123). Then
[Ulag)g] = [_U1+U2ag] = U1 + U2 + U3 # 07

so no nontrivial 3-element of G acts quadratically on V. In particular the
action of G on V is 3-stable.

In most of the following it would suffice to regard V as a vector space over
the prime field F, = Z/pZ (2.1.8 on page 46). But in the proof of 9.1.4
it is more appropriate to investigate the action of G on an F,-vector space
W, where F, has characteristic p,? we take a slightly more general point of
view and say that a group or element acts quadratically on the F4-vector
space W, if it acts quadratically on the additive group of W.

9.1.2 Let G act on the Fy-vector space W # 0, q = p™. Suppose that

(1) G ={a,b), where a and b act quadratically on W,
(2) G/Cg(W) is not a p-group, and

(3) o(ab) = p°k and k|(qg—1).
Then there exists a homomorphism

v: G — SLa(q),

such that G¥ s not a p-group.

Proof. We proceed by induction on |G| + dim W. If the action of G is not
faithful, then |G/Cq(W)| < |G| and the assertion follows by induction.

Let W be a maximal G-invariant subspace of W. If G/Cqg(W;) is not
a p-group, then by induction the claim follows for the pair (G,Wj) and
thus also for the pair (G,W). Finally, if G/Cqg(W7) is a p-group, then by

2 All vector spaces under consideration are finite-dimensional.
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hypothesis (2) and 8.2.2 on page 184 G/Cqg(W/W) is not a p-group. The
case Wi # 0 gives dim W/W; < dim W, and again the assertion follows by
induction.

We are left with the case that G acts faithfully and irreducibly on W. In
particular a and b are p-elements since they act quadratically. Hypothesis
(2) shows that G is not Abelian.

By hypothesis (3) and Schur’s Lemma (8.6.1 on page 211) the cyclic group
(ab) acts as scalar multiplication on a minimal (ab)-invariant subspace of
W. In particular, there exists a vector w # 0 in W and A € Fj such that

w® = A\, and thus w® = 2ot

If w* € Fyw then Fyw is G-invariant and thus W = F,w by the irre-
ducibility of W. But then G is Abelian, a contradiction.

We have shown that Wi := F,w + F,w® is 2-dimensional. The quadratic
action of a and b gives

w* —w = [w,a] € Cw,(a), and
W —w = A lwt —w € Oy, (b).

Hence (w®)* € Wi, w® € Wy and of course also (w®)? € W;. This shows

that W is G-invariant and thus W; = W. In particular G < SL(W) =
SLa(q) since G is generated by the p-elements a, b. O

9.1.3 Let p#2 and G be faithful on V. Suppose that

(1) G = {a,b), where a and b act quadratically on V, and

(2) G is not a p-group.
Then the following hold:

(a)  The Sylow 2-subgroups of G are not Abelian.

(b) If Q is a normal p'-subgroup of G and [Q,a] # 1, then p = 3, and
there exists a section of G isomorphic to SLa(3).
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Proof. Let o(ab) = p°k such that (p,k) =1, and let g be a power of p such
that k|(g —1).> We write V additively as a vector space over F, (< F,)

and choose a basis v1,...,v, of V. Let W be an F4-vector space with basis
Vly...,Un, i.e., V. C W. The action of G on V is uniquely determined by
the images of the basis v1,...,v, under GG. Hence this action of G on V can

be extended in a unique way to an action of G on the vector space W.* Now
G and W satisfy the hypothesis of 9.1.2, so there exists a homomorphism
¢: G — SLa(q) such that

G? = (a”?,b%)
is not a p-group. In particular, G¥ is not p-closed since a” and b¥ are
p-elements. Thus, claim (a) follows from 8.6.13 on page 221.

For the proof of claim (b) assume that Q¥ is an a®-invariant p’-subgroup
such that [Q¥,a?] # 1. Then (b) follows from 8.6.12 on page 219. O

9.1.4 Theorem. Let p # 2. Suppose that the action of G on V is
faithful and not p-stable. Then the following hold:

(a)  The Sylow 2-subgroups of G are non-Abelian.

(b)  If in addition G is p-separable, then p = 3, and there exists a section
of G isomorphic to SLa(3).

Proof. Since G is not p-stable on V' there exists a € G'\ O,(G) such that
[V,a,a] = 1. Let K be the set of G-composition factors of V. By 8.2.10 on
page 188

O0p(G) = ) Ca(W).
wek

Hence there exists W € KC such that a & Cg (W) and thus
aCa(W) € Op(G/Ca(W)) = 1.

Now G/Cq(W) and W satisfy the hypotheses, and by induction on |G|+|V|
we may assume that W =V and O,(G) = 1. By Baer’s Theorem (6.7.6)
there exists b € ¢ such that

G1 = (a,b)

‘ ?As 7, /kZ is finite, there exist positive integers i < j such that p’ =p* (mod k), so
P’ "=1 (mod k).
“In matrices: G < GLn(p) < GL,(q).
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is not a p-group. Now claim (a) follows from 9.1.3 (a) (with G; in place of
G3); note that b also acts quadratically on W.

Assume that G is p-separable and set @ := Op(G). Then [Q,a] #1 (6.4.3
on page 134), and the element b can be chosen in a®. Hence claim (b)
follows from 9.1.3 (b). O

With the Theorem of Dickson mentioned on page 221 the proof of 9.1.4 (a)

provides a stronger statement: There exists a section of GG isomorphic to
SLa(p).

Conversely, let V' be a 2-dimensional vector space over [F,. Then the iso-
morphism SLy(p) = SL(V') gives rise to an action of SLa(p) on V, and this
action is not p-stable since O,(SL(V)) =1 (see Example (d)).

We close this section with a lemma that will be needed later. The proof
refers to a situation where quadratic action occurs in a natural way.

9.1.5  Suppose that G acts faithfully on V. Let Ey, Ey be two subnormal
subgroups of G such that [V, E1, Ex] = 1. Then [E1, E3] < Op(G).

Proof. By our hypothesis V; := [V, E1] is invariant under E := (E1, E»), so
EO = CE(Vl) and EO = CE(V/V1)

are normal subgroups of E. As Ey N EY acts quadratically on V, EyN E°
is a p-group (9.1.1 (¢)), so EgNE® < O,(E). Now E; < E° and FEy < E
imply that

[E1, Es] < [EY,Ey] < EgNE° < O,(E).

By 6.7.1 on page 156 E and thus also O,(FE) is subnormal in G, so O,(E) <
Op(G) (6.3.1 on page 130). 0

9.2 The Thompson Subgroup

As in the first section of this chapter let G be a group that acts on the
elementary Abelian p-group V. In this section we discuss the question how
to find subgroups of G that act quadratically and nontrivially on V.
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Obviously, for every subgroup A < G the subgroup
A" = Cy([V, A))

acts quadratically on V. Thus, we are interested in conditions that guarantee
Ca(V) < A*. The next lemma gives a first hint. The crucial argument in
the proof is due to Thompson.

9.2.1 Suppose that the group A acts on the elementary Abelian p-group
V' such that A/Ca(V') is Abelian. Let U be a subgroup of V. Then there
exists a subgroup A* < A such that one of the following holds:

() |A][Cv(A)] < |4*]|Cy(A7)]  or
(b) A" = Ca([U, A]), Cy(A*) = [U, AJCy(A) and
AlCy (4)] = |47] [Cy (A7)

Proof. We may assume that for all subgroups B < A
(+) A][Cy(A)] = |BI|Cv(B)],
and we verify the equations in (b) for

A* = Cy([U, A]).

Clearly [U, A, A*] =1, and since A/C4(V) is Abelian also [4, A*, U] = 1.
Hence the Three-Subgroups Lemma gives [U, A*, A] =1, i.e.,

(1) [U,A"] < Cv(A).
First we show that the inequality
(2) [AlCv(A)] < |A*] |[U, A]Cy (A)]
implies (b). We have
. o ) @
AT [Cy(AT)] < [AllCv(A)] < [A7] |[U, A]Cv (A)]
< [A*]|Cv (A7)

and thus |A*| |Cy(A%)] = |A]|Cv(A)| and |[U, A]Cv(A)|

= |Cv(A7)]. The
last equality implies Cy (A*) = [U, A|Cy(A) since [U, A] < Cy(

")
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It remains to prove (2): We may assume that U # 1. Let
Y :=Cy(A) and X := [U,A].

We first treat the case |U| = p, the general case then will be reduced to this
one by induction.

Assume that U = (u). Then 1.5.4 on page 25 shows that [u, A] = [U, A]
since V is Abelian. The mapping

p: AJA* — XY/Y such that aA* — [u,alY
is well-defined since for all a* € A* by (1)
(u,a*a] = [u,a] [u,a*]* € [u,d]Y.

If ¢ is injective, then
[AJAT] < |XY/Y,
and (2) follows. Let aj,as € A such that [u,a1]Y = [u,a9]Y, ie.,
[u, a1][u, az] ™t = uu=% € Y. Then
[u,a1a5'] = w e = (u_a2ua1)a2_1 =utu " eY
and thus
[u,a1a5 1, A] = 1 = [aja; ', A, ul,

so [u, A,ara; '] = 1 and aja;’ € Ca([U, A]) = A*. This shows that ¢ is
injective, and (2) follows in the case U = (u).

Assume now that |U| > p. Let U; be a subgroup of index p in U. Then
U = Uj{u) for a suitable u € U. Let

X1 = [Ul,A], A1 = CA(Xl) and
X2 = [(u},A], A2 = CA(XQ).

Note that
X1 Xo Cv(A) = XCV(A), A" = A; N A,

and
X1 Cv(A) N Xy Cv(A) < CV(AlAQ).

By induction on |U| we may assume for i = 1,2

[AlICv(A)] = [Ai]|X: Cv(A)].
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Hence

—~
*
~—

|A[|Cy (A)] |A1As] [Cy (A1 A2)]

|A1A2’ ’ch\/(A) N XQCV(A)|

[As|[A2| [X1Cv (A)[|X2Cy (A)]
’Al N Ag‘ ‘Xlov(A) Xgov(A)|
|AP?|Cv (A)[?

|A*|| X Cy (A)]

and (%) implies (2). O

= 1V IV

—
(=2}

In view of 9.2.1 candidates for quadratic action are subgroups A of G that
satisfy:

Q1 |A]|Cv(A)| > |A*||Cy (A*)]|, for all subgroups A* of A, and

Qs  A/Cy(V) is an elementary Abelian p-group.

Note that by 9.1.1 (¢) every quadratically acting subgroup A satisfies Q.
Hence Qs is a necessary condition.

Let Ay (G) be the set of subgroups A of G that satisfy Q; and Qp. For
every such A we obtain from 9.2.1 (b) (with U =V):

9.2.2 Let Ac Ay(G) and A* .= Cu([V, A]). Then

|AJAY| = |Cyv(AT)/Cv(A)] and Cy(A") = [V, A]Cy(A). O

9.2.3 Timmesfeld Replacement Theorem [95].° Let A € Ay(G)
and U be a subgroup of V.. Then

Ca([U,A]) € Av(G) and Cv(Ca([U, 4])) = [U, A]Cy (A).

Moreover [V,Ca([U, A])] # 1 if [V, A] # 1.

Proof. Let A* := C([U, A]). Since A € Ay (G) 9.2.1 (b) applies, so

() [ATCv(AY)] = [AllCv(A)] and  Cy(AY) = [U, A]Cv(A).

®See also [38].
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In addition, for every Ay < A* Q; gives
[ Ao||Cv (Ao)| < [A™]|Cv (AY)].

Hence A* € Ay (G).

For the proof of the additional claim we may assume that [V, A*] = 1. Then
(") implies that

In particular [V, A, A] = [V, A]. But then [V,A] = 1 since A/C4(V) is a
p-group (8.1.4 b on page 177). O

By Ay (G)min we denote the set of minimal elements of the set

{Ac Av(@)] [V, A] # 1}

9.2.4  FEwvery element of Ay (G)min acts quadratically and nontrivially on
V.

Proof. Let A € Ay (G)min- By 9.2.3 A* := C([V, A]) is also in Ay (G) and
[V, A*] # 1. The minimality of A implies A* = A and thus [V, A, A] = 1.
O

Up to now we have discussed candidates for quadratic action but never could
exclude the possibility that these subgroups act trivially on V' (Example on
page 226). In this context 9.2.4 yields:

9.2.5 Suppose that G is p-stable on V and Op(G/Cq(V)) = 1. Then
every element of Ay (G) acts trivially on V. O

The property
(%) Op(G/Ca(V)) =1

is not only useful for p-stability. We will meet it later in other situations.
For example (x) is satisfied if G acts irreducibly on V' (8.1.5 on page 178).
A more general condition that implies () is the following:

9.2.6 Let V= (Cy(S)| S €Syl,G). Then Oy(G/Cq(V)) = 1.
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Proof. Let S be a Sylow p-subgroup of G. Set
Z = Cy(S) and C := Cg(V).
Since all Sylow p-subgroups of GG are conjugate we get
V = (Z9).

Let ¢ < D < G such that D/C = Oy(G/C). Then DN S € Syl, D,
D=C(DnS) (3.2.5), and

G = CNg(D n S)  (Frattini argument).

This gives
V = <ZNGf(DﬁS)>

and thus [V, DNS]=1. Hence DNS < C and D =C. O
The following application of 9.2.6 can be used frequently:

9.2.7 Let G be a group and Cg(Op(G)) < Op(G). Then
Vo= (QZ(9))] S € Syl,G)

is an elementary Abelian normal subgroup of G and Op(G/Cq(V)) = 1.

Proof. Let S € Syl,G. Then Q(Z(S)) < Cg(O (G)) Op(G) < S,s0V
is contained in Q(Z(0,(G))) and Q(Z(S)) = Cy(S). Now the assertion
follows from 9.2.6. a

In the following we are interested in finding conditions for the existence of
elements in Ay (G) that act nontrivially on V. As in 9.2.7 we investigate a
situation that holds in most of the applications. From now on we assume:

e V is an elementary Abelian normal subgroup of G, and

e (G acts on V by conjugation.
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Fundamental for the following investigations is a subgroup of G that was
introduced by Thompson and carries his name. For the definition of this
subgroup let p be a prime and &£(G) be the set of elementary Abelian
subgroups of G. Let

m = max{|A|| A € E(G)},
AG) = {Ae€&(G)]|A] = m}, and
J(G) = (A| Ae AG)).

J(G) is the Thompson subgroup of G with respect to p. It will be always
clear from the context which p is meant in the definition of the Thompson
subgroup.

Before we go back to quadratic action, we first list some elementary proper-
ties of the Thompson subgroup that are easy consequences of the definition.

9.2.8 (a) J(G) is a characteristic subgroup of G, which is nontrivial
if p e n(G).

(b) If J(G) <U <G, then J(G) =J(U).

() J(G)=(J(S)| S €Syl,G).

(d) If x € Ca(J(Q)) and o(z) = p, then z € Z(J(G)).

(e) If BC A(G), then J((B)) = (B). O

e
The following result gives a connection between A(G) and Ay (G):

9.2.9 (a) A(G)C Ay (G).
() If VLZ(J(Q)), then there exists A € A(G) such that [V, A] # 1.

Proof. (a) Let A* be a subgroup of A € A(G). Then A*Cy(A*) isin £(G).
It follows that
_ ATy (A)]  [AT][Cy (A7)

Al > |A*Cy(AY)] = > ,
A= WO = Tem v 2 T

and A satisfies 9;.
(b) is obvious. O

According to 9.2.9 (a) we can apply our earlier results to A(G) and get:
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9.2.10 Theorem. Let A € A(G) and Ap:= [V, A]C4([V, A]).

(a) Ag isin A(G) and acts quadratically on V.

(b) If [V, A] # 1, then also [V, Ay # 1.

Proof. Let X := [V, A] and A* := Cy(X); i.e.,, Ag = A*X. Then Ay is an
elementary Abelian p-group. By its definition

[Va AOaAO] < [V7 A7 AO] = 17

so Ao acts quadratically on V. For the proof of Ay € A(G) it suffices to
show that |A| =|Ap|. The maximality of A gives

Cy(A) =VNA=VnA,
and by the definition of A*

XNA=XnA"

It follows 025
[A[[A N V] = [A][Cv(A)] =" |[AT][|XCv (A)]
and by 1.1.6
[A*[| X Cy (A)] A [ X] A [ X]
A= "ol T Eac@ T wnaq - A=A
This yields (a), and 9.2.3 implies (b). O

A further property that implies nontrivial quadratic action, can be derived
from the observation that for A* := C4(V) condition Q; implies

& [A/Ca(V)| = [V/Cv(A)].

9.2.11  Let B be the set of subgroups A < G satisfying Q) and Q. Let
A € B and suppose that

(m) [A*/Ca- (V)] |Cv (A7) < [A/Ca(V)]|Cv(A)].

for all subgroups A* < A that are in B. Then A € Ay (G).
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Proof. We have to verify Qp for A. Let A* < A. If A* does not satisfy O/,
then A* is not in B and

Q1
|A™/Ca=(V)[[Cv(AT)] < [V| < [A/Ca(V)||Cv(A)].
It follows

[A/Ca(V)|Cy(A)] > |A*/Cas (V)] |Ov (A7)
20 A5 CA(V)/Ca(V) Oy (A7),

This inequality is also true for A* € B since then (m) holds. Thus, we have
forall A*< A

(AT |Cy (AT)] < [A"Ca(V)][Cv(A7)| < [A]ICv(A)];

and A satisfies 9;. O

Assume that there exists an A € B that acts nontrivially on V. Among all
such A we choose A with the additional property that

[A/Ca(V)[Cv(A)]

is maximal. Then (m) in 9.2.11 holds for A4, i.e., A € Ay(G) and Ay (G)min
# @. Now 9.2.4 gives the existence of subgroups that act quadratically and
nontrivially on V.

Let S be a Sylow p-subgroup of G. Then G is Thompson factorizable
with respect to p if

G = Op(G) Ca(Q(Z(9))) Na(J(5)).

Note that S is a Sylow p-subgroup of G := G/O,/(G). The Frattini argu-
ment implies (see 3.2.8 on page 66)

Ne(J(S)) = Na(J(S)) and  Cx(Q(Z(9))) = Ca(Q(Z(5))).

Hence G is Thompson factorizable if and only if G is.

9.2.12 Let Oy(G) =1 and V := (Q(Z(S))| S € Syl,G). Then G is
Thompson factorizable if and only if J(G) < Cq(V).
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Proof. Let S € Syl,G and C := Cg(V). Assume that G is Thompson
factorizable. Then Sylow’s Theorem gives

V = (Q(Z(9))| g€ G) = (Z(9))?| g € Na(J(S))).

Since Q(Z(S)) < Z(J(S)) this implies V < Z(J(S)) and thus J(G) < C
(9.2.8 (¢)).
Assume now that J(G) < C. Then J(S) < CNS. Since

J(S) char C' N S € Syl, C
and Q(Z(5)) < Z(J(S)) the Frattini argument yields the factorization

G = CNg(C N S) = Ca(Q(Z(5)))Na(J(S)). D

9.3 Quadratic Action in p-Separable Groups

In this section we consider p-separable groups that are not Thompson fac-
torizable with respect to p. The following observation provides us with
conditions for a suitable set-up:

9.3.1  Suppose that G is a p-separable group that is not Thompson fac-
torizable with respect to p. Let Oy (G) =1 and set

V= (QZ(5)| S €Sy, @) and H = J(G)Ca(V)/Ca(V).

Then the following hold:

S1 Cu(Oy(H)) < Oy(H).
So Vs an elementary p-group, and H acts faithfully on V.
S3 H=(A|Ac Ay(H)) # 1.

Proof. By 6.4.3 Cg(O,(G)) < Op(G). Hence Sz and O,(G/Cq(V)) =1
follow from 9.2.7, in particular O,(H) = 1. As H is p-separable and thus
also p’-separable, 6.4.3 on page 134 yields S;. Moreover, 9.2.9 and 9.2.12
imply H # 1 and Ss. O
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In the following we will use these properties §; — &3 rather than the p-
separability of G.

We begin with an example that later in 9.3.7 will turn out to be typical. Let
Vi,...,V, be elementary Abelian p-groups of order p?. We regard these
groups as 2-dimensional [F,-vector spaces. Then

E; :=SL(V;), i=1,...,r
acts its natural way on V;, and

Av,(Ei) = {A] A € Syl, Eq}

K2

(compare with 8.6.4 on page 215). Hence, the pair (FE;, V;) satisfies Sy and
S3. For p =2 and p = 3 the groups F; are solvable. Thus, in these cases
also &1 holds, see 8.6.10 on page 219. Let

H=F x---xFE., and V =V} x --- x V..

Then the action of the components F; induce an action of H on V, i.e., E;
acts as SL(V;) on V; and [V;, E;] =1 for i # j. It follows that

Av,(Ei) = Av(E;) C Ay (H),

so for p € {2,3} the pair (H,V) satisfies S} — Ss.
From now on let (V, H) be a pair satisfying Sj, So and Ss.

9.3.2 Let 1#Ac Ay(H).

(a) [A]=[V/Cv(4)].

(b)  There exist Ai,...,Ar € Ay(H)min such that A = A} x --- x Ay.
(¢) |B|=|[V,B]|l=|V/Cy(B)|=p for all B € Ay (H )min-

Proof. The hypothesis A € Ay (H) gives
(%) |Ail|Cv (As)| < [A]|Cv (A)]
for all subgroups A; < A. Let B be the set of maximal subgroups of A, i.e.,

|A/A;| = p for A; € B,
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and set @ := Oy (H). We apply 8.3.4 (c) on page 193 to A and (). Then
() 1L # (@, A] = ([Cq(As), Al| Ai € B).
Hence there exists Agp € B such that

Qo = [Cqo(Ao), A] # 1,

and Qo = [Qo, A] (8.2.7 on page 187). If Cy(Ag) = Cy(A), then Qg acts
trivially on Cy(Ap), and the P x @Q-Lemma (applied to Qg x Ag and V)
yields [V, Qo] =1 and thus Qg = 1, a contradiction.

We have shown that Cy(Ag) # Cyv(A), in particular |Cy(Ag)/Cv(A)| > p
and
[AllCy (A)] < [Aol|Cv (Aol

Since by () also the opposite inequality holds we get

(%) [Al[Cv(A)] = [Ao]|Cv (Ao)l,

and Ay € Ay (H). Moreover, if A € Ay (H )min, then Ag =1 and
Al = [V/Cyv(A)] = p.

This, together with (xx), gives (a) and (c).

It remains to prove (b). We may assume that |A| > p. According to (')
there exists a second subgroup A; € B such that [Cg(A1),A] # 1, and as
we have seen above A; € Ay (H).

By induction on |A| we may assume that (b) holds for Ay and A; in place
of A. But then (b) also holds for A since A = ApA;. O

9.3.3 Let A€ Ay(H)min and x € Oy (H)\ Co ,(1)(A), and set
E, = (AAY), Q= E, N Oy(H) and V, = [V, E,].

Then the following hold:

(@) pe{23}.

(b) |V33‘ = p2-
(¢) FE,=SL(V,) = SLa(p).
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In particular, Q. acts irreducibly on V, and

~ J Cs .. p=2
Q:C—{QS pr 3

Proof. The subgroups A and A" are are two different Sylow p-subgroups
of F, since

1 # [z,A] < E; N Op(H) = Qg and AQ, = E;.
Thus they are conjugate under @),., and

() @z, Al # 1.
Since E, acts trivially on V/[V, A][V, A*] we get
Ve = [V, A][V, A"].

By 9.3.2 |A| = p and |[V, A]| = p, so |Vz| < p?. Moreover, by 8.2.2 on
page 184 the p’-group Q) acts faithfully on V.. Hence, the quadratic action
of A gives (b). In addition, 8.6.12 on page 219 and (') imply (a). Now
the structure of the groups SLy(2) and SLa(3) given in 8.6.10 on page 219
yields (c¢) and the additional claim. O

9.3.4 Let A€ Ay(H)min. Then [Oy(H),A] is a normal 3-subgroup of
Op(H) andp =2, or [Oy(H),A] is a non-Abelian normal 2-subgroup and
p = 3. In particular, the subgroups Q. defined in 9.3.3 are subnormal in
Op (H).

Proof. The subgroup [O,(H),A] is normal in O, (H). Let r be a prime
divisor of |Oy (H)| and R an A-invariant Sylow r-subgroup of O, (H) (8.2.3
on page 185). If [R, A] # 1, then 9.3.3 for z € R and [z, A] # 1 shows
that p = 3 and @, is a quaternion group, or p = 2 and (), is a non-
trivial 3-group. In particular, this shows that Oy (H) = RCOP,( m)(A) and
Oy (H),A] <R (8.1.1 on page 177). O

In the situation of 9.3.4 the following lemma is crucial:
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9.3.5 Let E be a group that acts faithfully on the elementary Abelian
p-group V', and let Ey, Fy be two subnormal subgroups of E and

Vi =[V,E], i=1,2.
Suppose that the following hold:

1 E = <E1,E2> and Op(E) =1.

3 VlﬁVgandeﬁVl.

(1)
(2) E; acts irreducibly on 'V;, i =1,2.
(3)
(4)

|E1| > 2 and |E2| > 2.

Then E = FE; x Ey and [V,E] =V; x V3.

Proof. Clearly [V, E] = ViVa, and E acts trivially on V/V;V,. By 8.2.2 (b)
Cp(V1V3) is a p-group and thus by (1)

CE(V1V2) < Op(E) = 1.

Similarly Cg,(V;) < Op(E;) = 1 since E; is subnormal in £ (6.3.1). The
irreducibility of V; gives V; = [Vi, E;]. Hence, V1V, and FE satisfy the
hypotheses, and we may assume that

V =WVW.

Assume first that VlE = V4. Then Vj N V5 is invariant under Ey and thus
ViNnVa =1 by (2) and (3). It follows that V =V} x V5 and

[V,E\,EBp] = [Vi,Es] < ViNVy = 1.

Now 9.1.5 implies [Ey, Fs] < Oy(E) = 1. Hence also Vo¥ = V5. Now a
symmetric argument shows that also [Va, E1] = 1, and V is centralized by
E1NE5. The faithful action of E on V gives E1NEy =1,ie., E = FE| X Fs.

We may assume now that neither V; nor V5 is normalized by E. In particular,
K = NEQ(‘/l) < Fs.
We choose our notation such that

Vil = [Val.
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Let z € B3\ K and E* := (Ey, EY). Then E* is subnormal in E (6.7.1 on
page 156) and thus O,(E*) < O,(E) = 1. Hence (Ey, Ef, Vi, V") satisfies
the hypotheses in place of (E1, Fa, V1, V). Moreover E* < E since F # Ej
and E; << E. By induction on |F| we may assume that

E*=FE; xE' and Vi NV = 1.

In particular
[le,El] = 1 and Vl X le S V = ‘/1V2

Thus |Vi| > |Va| implies
Vi = |[Vo| and V =V x Vo = Vi x V"

In the case |Ey: K| > 2 there exists y € F5 \ K such that Vi* # V. The
same argument as above—this time applied to (EY, EY, V¥, V{)—gives

V=VxV =vVxWV

and [V, E1] = 1. But this implies [V, F;] = 1, a contradiction.

We have shown that |E; : K| = 2; in particular K < Ey and V*E = V.
It follows that

[V1>K] S Vl N V2 =1 and [Vlm,K] S ‘/133 N ‘/2 =1.

But this shows that [V, K] = 1 and thus K = 1 and |E3| = 2, which
contradicts (4). O

9.3.6 Let Ac Ay(H)min and set

E = [Oy(H),AlJA and F := Cg([V,E]).

(a) E =SLa(p) and p € {2,3}.
(b) V =|[V,E] x Cy(E) and ||V, E]| = p?.
(¢ H=ExF and Ay(H)min = Ay (E) U Ay (F)min.

(d) [V,F] <Cv(E) and Ay(F) = Ac, g)(F).
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Proof. From 9.3.2 (c) we get
() Al = [V, All = p.

Let Q :=[Oy(H),A], and for x € Q\ Cg(A) let E;,Qz,V, be defined as
in 9.3.3. We will use the properties of E, given there without reference.

The coprime action of A on O, (H) gives
Op (H) = Co,,(m)(A)Q;

E = (E,| 7€ Q\Co(A)) and O,(E) = C4(Oy (H)) = 1.

Pick z,y € Q \ Cg(A). Then @, and Q, are subnormal in O, (H) (9.3.4).
If V, #V,, then Fy := @, and FEj := @, satisfy the hypotheses of 9.3.5.
Hence V, NV, =1, which contradicts [V, A] <V, NV,.

We have shown that V, =V}, for all z,y € @\ Cg(A). In particular
V,Q] = [V,E| =V, = Cy x C).
Now 8.4.2 on page 198 yields
Z, V = [V,d] x Cv(Q).
and (") implies Cy(Q) = Cy(E). It follows that
E =SL(V,) = E, =E and V = [V, E] x Cy/(E),

and (a) and (b) hold.

The decomposition Z is invariant under O (H) since @ is a normal sub-
group of H. Let B € Ay (H)min and

As above for A and @) we get

V,Qll = p* and Cv(Q) = Cv(BQ).

Moreover, by 9.3.3 CNQNis irreducible on [V, é] The invariance of the de-
composition Z under @) gives

[V,Q] = [V,Q] and Cy(Q) = Cv(Q)
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or

V,Q] < Cy(Q) and [V,Q] < Cv(Q).

In both cases the decomposition Z is invariant under B. Thus, by 9.3.2 (b)
this decomposition is also invariant under H. As Cy(Cy(Q)) acts faithfully
on [V, Q)], we also get that Cy(Cy(Q)) = E and H = E x F. Moreover,
9.3.2 (b) implies

-AV(H)min - AV(E) U AV(F)

This is (c), and the H-invariance of Z gives (d). O

9.3.7 Theorem (Glauberman [51]). Let E,...,E, be the different
subgroups of the form [Oy(H),AJA, A € Ay(H)min. Then the following
hold:

(@) pe{2,3}

(b) H = FE x--xE. and V = Cy(H) x [V,E{] x --- x [V, E,].
In particular, E; acts faithfully on [V, E;] and trivially on [V, Ej]
for j #1.

() |IV,E]l=p® and B, = SL([V, E)) = SLa(p) for i=1,...,r.

(d) A= X(ANE;) and |A||Cv(A)| = |V| for all A€ Ay(H).
=1

Proof. By 9.3.6 H = E; x H; for Hy := Cg(|[V, E1]), and (Hy,Cy(E7))
satisfies §1 — S3. Now (a)—(c) follow form 9.3.6 by an elementary induction.
Claim (d) is 9.3.2 (b). O

According to 9.3.1 we now can apply 9.3.7 to p-separable groups:

9.3.8 Let G be a p-separable group with Oy (G) =1 that is not Thomp-
son factorizable with respect to p, and let

V = (Q(Z(S))] S € Syl, G).

Then the statements (a) — (d) of 9.3.7 hold for H := J(G)Cq(V)/Ca(V).
O
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We give two corollaries that will be needed in Chapter 12, resp. 11.

9.3.9 Let G be a p-separable group and V an elementary Abelian normal
p-subgroup of of G such that O,(G/Cq(V)) =1. Then for C = Cg(V)

[Q(Z(J(C))), J(G)] < V.

Proof® Let H = J(G)C/C. If H =1, then J(C) = J(G) by 9.2.8 (b)
and thus
[Q(Z(J(C))), J(G)] = 1.

Hence, we may assume that H # 1. The pair (V, H) satisfies condition S
and by 6.4.3 on page 134 also S;. Moreover 9.2.9 (a) implies S3. We apply
9.3.2 (a). Then for A € A(G)

[A/Ca(V)] = [AC/C| = [V/Cy(A)|.
The maximality of A yields Cy(A) = ANV and
Al = [VCa(V)] = [V/V 0 Al|Cy(A)] = |A].
It follows that
(") VCA(V) € AC) C A(G).

Note that V' is contained in V := Q(Z(J(C))), so by (') Ca(V) = Ca(Vy).
Because of 9.2.9 (a) we are allowed to use Q) on page 237 for A and Vj:

|A/Ca(V)] = [V/Cv(A)| = [VCy,(A)/Cvy(A)] < [Vo/Cvy(A)]
< [A/Ca(Vo)| = [A/Ca(V)].

This gives Vo = VCy,(A) and thus [V, 4] < V for A € A(G). Now
Vo, J(G)] <V follows. 0

9.3.10 Let X be an elementary Abelian q-group (q a prime) that acts on
the p-separable ¢'-group G. Suppose that Oy (G) = 1.

(a) G ={(Na(J(9)),Ca(Z(5))),Ca(X)) for 5 € Syl,G.

5The proof uses an argument of B. Baumann; see [26].
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(b) If G is not Thompson factorizable with respect to p, then p = 2 or
p = 3, and there exist subgroups W and D of Cq(X) such that

W =C,xC, WP =W and D/Cp(W) = SLy(p).

Proof. If G is Thompson factorizable, then clearly (a) holds. Thus, we may
assume that GG is not Thompson factorizable. Let S be an X-invariant Sylow
p-subgroup of G (see 8.2.3). As in 9.3.8 we set

V = (QZ(9))%), C:=Cg(V) and H := J(G)C/C.

Note that the semidirect product XG acts on V. According to 9.3.1 we can
apply 9.3.7 to H. Let F; and V;, ¢ = 1,...,r, be defined as there. Then X
acts on A(G) (by conjugation) and thus also on {Fji,..., E.}. We choose
notation such that {Fi,..., Fx} is an orbit under X. Since w(FE;) = {2,3}
and (¢,|G|) = 1 we get ¢ > 5. Hence Nx(E;) acts trivially on Ej, as
|E1‘ =6 resp. |E1’ = 24.

Set
N :=J(G)C, T:=NnS(eSyl,N) and P:= (TC/C)N Ey (€ Syl, E1).
Since Ey = (PF1) we can apply 8.1.6 on page 178 and get
Ey x --- x B, < (Cu(X),P¥).

The corresponding statement holds for every other X-orbit of {Ey,..., E,}.
It follows that

H = (Cy(X), TC/C) and thus N = (Cn(X),T)C
since PX isin TC/C. Now the Frattini argument implies

G = Ne(MN **2° No(J($)N = (Na(J(S)),C, Ca(X)).

This is (a).
For the proof of (b) we note that Nx(V;) = Nx(F;) and investigate

WXy =WV x---x Vi, (E1X) = E; x---x E.
Let S be a transversal of Nx(FE;) in X. Then

W={[lv|veWVi} < Cao(X) (8.1.6 (a)on page 178).
seS
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For the corresponding diagonal in (E1X) we get

D = { HS€S’ €€E1} < CH(X)

Here the action of D on W is equivalent to that of E; on Vi; thus W =2 1}
and D = SL(W). The coprime action of X on D gives a subgroup D of
Cn(X) such that DC/C = D. This implies (b). O

9.4 A Characteristic Subgroup

Let p be a prime, G' a group such that Op(G) = 1, and S € Syl,G. By
definition G is Thompson factorizable with respect to p if

G = Na(J(5)) Ca(2(Z(5))).
In this section we investigate the question under which additional hypotheses
one can find a nontrivial characteristic subgroup of S that is normal in G.
The most important and best-known answer to this question is Glauber-
man’s ZJ-Theorem [50]. It states that
G = Na(Z(J(95)))

whenever G is a group such that Cg(O,(G)) < O,(G) and the action of G
on the chief factors of G in O,(G) is p-stable. Note here that the definition
of Z(J(S)) only depends on S but not on G.

In this section we prove an analogue of Glauberman’s ZJ-Theorem using a
different approach. Instead of showing that a given characteristic subgroup

of S has the desired property, we will approrimate such a subgroup using
suitable subgroups of Z(J(.9)).

In the following let S be a p-group. By Cj(S) we denote the class of all
pairs (7, H) satisfying the following four conditions:”

Ci H is a group with Cy(Op(H)) < Op(H), and 7 is a monomorphism
from S into H.

Co ST is a Sylow p-subgroup of H.

"Thus (1, H) € C5(S) means that C;-C4 hold for (7, H).
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Cs J(S7) is a normal subgroup of H.

C4 H is p-stable on every normal subgroup of H that is contained in
QZ(J(57)))-

It is evident that (id,S) isin Cs(S).
For a p-group P we set
A(P) := QZ(P)) and B(P) := QZ(J(P))).

Then A(P7) = A(P)" and B(P") = B(P)" for every isomorphism 7 of P.
We now define recursively a subgroup W (S) < B(S). We start with

Wy := A(S) < B(S).
Assume that for ¢ > 1 the subgroups Wy, Wy,...,W;_1 with
A(S) =Wy < W <--- < W1 < B(S)

are already defined. If W;_17 < H for all (1, H) € C;(S5), then we define
W(S) := W;_1. In the other case we choose (1;, H;) € C;(S) such that
W;_1™ 1is not normal in H; and define

Note that in this case
C
A(S™) < Wiy < W[ < B(S™) < H;

and thus

Since B(S) is finite there exists an integer m where this recursive definition
terminates, i.e., where we have

W(S) := W,
Then
R AS) =Wy <o < Wy <--- < W,, = W(S) < B(S5)
and

) W(S)" <H forall (r,H) € C;j(S5).
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At first sight this definition of W (S) seems to depend on the choice of the
pairs (7;, H;). But if one defines in an analogous way

Wy = Wo <0 < Wm =: W(S)

for suitable pairs (7, H;), i = 0,...,m, then by (') W(S) < W(S). The

—

symmetric argument shows that also W(S) < W(S) and thus W(S) =
W(S).

Let 1 be an isomorphism of S. Then
(r,H) = (y~'7,H)
defines a bijection from C;(S) to C;(S"), and the series R corresponds to
AS") = AS)"=WoT < - < W, T=W(S)T < B(S)" = B(S").

It follows:

9.4.1 Let n be an isomorphism of S. Then W (S") = W (S)". In parti-
cular, W(S) is a characteristic subgroup of S satisfying

W(S) #1 << S # 1. O

The additional statement follows from the fact that Q(Z(S)) < W(S) and
Z(8) £ 1if S # 1.

9.4.2 Let x €8S such that [W(S),z,z] =1. Then [W(S),z] = 1.

Proof. For Wy in R we have [Wp,z] =1, for all z € S. Assume now that
S is a counterexample. Then there exists ¢ € {1,...,m} such that the
implication

Wiz,xl =1, z€ 8§ = [W,x] =1

does not hold. We choose 7 minimal with that property. Then

(+) Wi_1,2] #1, =z €S = [Wi1,z,2] # 1.

Let y € S such that [W;,y,y] =1 but [W;,y] # 1. For a := y™ this yields
(W;" a,al =1 and [W;T a] # 1,

where (7;, H;) is the pair used in the construction of W;.
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Now let C := Cy,(W;™) and C < L < H; such that L/C = O,(H;/C).
Then Cy implies aC € O,(H;/C), and P :=S" N L is a Sylow p-subgroup
of L, so L = CP. The Frattini argument gives H; = Ny, (P)L = Ng,(P)C
and thus

WiT = (Wi m)NmP)),

Hence, there exists h € Ny, (P) such that
[(Wi-1™)",a] # 1.
For z := (ahil)Tiil we get [Wi_1,x] # 1. This contradicts (4) since

1.—1 h—lT_—l

Wiy, z, 2] = (Wi ™) a,a)" ™ < Wi, a,a" ™ =1. O

For technical reasons the proof of the main theorem of this section requires
us to investigate—besides Cj(S)—the class Co(S) of all pairs (7, H) that
satisfy:

Col H is a group with Cy(Op(H)) < Op(H), and 7: S — H is a
monomorphism.

Co2 57 is a Sylow p-subgroup of H.
Co3 J(S7) is not normal in H and (7, Ng(J(S7))) € Cs(S5).

Co4 H is p-stable on every elementary Abelian normal p-subgroup of H
and on O,(H)/®(O,(H)).

9.4.3 W(S)" is normal in H for every (1,H) € Co(5).

Proof. Let (1,H) € Co(S) and
W = W(S)".

Since O,(H)™ < S and W(S) < S we get [O,(H), W] < W NO,(H),

Le.,
(1) [Op(H), W, W] = 1.
Because of Cyp4 this implies for V := O,(H)/®(O,(H))

WCr(V)/Cu(V) < Op(H/Cu(V))
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and thus W < O,(H) by Cpl and 8.2.9 (b) on page 188. Moreover, W<
O (H)™ " and W™ ' <8 give W < O,(H) and thus W" < O,(H) for all
h € H. It follows that

W, W' Wh =1 and [W(S), WhH™ ,(W"H™ '] = 1.
Now 9.4.2 yields
W(S),W")™ '] =1 and [W,W"] = 1.

Hence
w* = (W)
is elementary Abelian.

Assume first that [W*, J(S7)] = 1. Then also [W*, J(ST)" =1 for h € H,
so (W*,J(H)] = 1. Since J(S7) < J(H) there exists T' € Syl,, J(H) such
that J(S™) = J(T'). The Frattini argument implies

H = J(H)Nu(T) = J(H)Ng(J(587)) = Cy(W*)Nu(J(S7))

and W* = (WNeUS) By o3 (1, Ng(J(S7))) € C;(S) and thus W =
W(S)” < Ng(J(S7)), so W* =W follows, and W is normal in H.

We now assume that [W*, J(S7)] # 1 and show that this leads to a contra-
diction. Let Cy(W*) < L < H such that

L/Ca(W") = Op(H/Cu(W?))
and P := 5" N L. The Frattini argument gives
H = LNu(P) = Cu(W*)Ngu(P)
and thus
() W = (Wi,

Because of Cp4 and 9.2.10 there exists A* € A(S7) such that [IW*, A*] # 1
and A* < P. This implies A* < J(P) < J(S7), so [W,J(P)] =1. With (')
we get

(W= A% < [W*, J(P)] =1,
which contradicts [W*, A*] # 1. O

We say that a group G' (with S € Syl, G) is p-stable if the following two
conditions hold:
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e (G is p-stable on every elementary Abelian normal p-subgroup of G
and on O,(G)/P(0,(G)).
e Ng(J(S)) is p-stable on every normal subgroup V of N¢g(J(S)), which
is contained in Q(Z(J(S))).

9.4.4 Theorem [85]. Let S be a p-group. Then there exists a character-
istic subgroup W (S) of S satisfying:
(@)  Q(Z(5)) <W(S) <Q(Z(J(5)))-

(b) If G is a p-stable group such that Cg(Op(G)) < Op(G) and S is a
Sylow p-subgroup of G, then W(S) is a normal subgroup of G.

(c) W(ST) =W(S)" for every isomorphism n of S..

Proof. Let W(S) be defined as above. Because of 9.4.1 we only have to
prove (b). Let G be as in (b). Then (id,G) isin C;(95), if J(S) is normal
in G. In this case the construction of W (S) shows that it is normal in G.
If J(S) is not normal in G, then (id,G) is in Cy(.5), and (b) follows from
9.4.3. O

Here we want to emphasize again that the subgroup W (S) only depends on
S but not on the group G in (b). Thus, given a group Y with S € Syl, Y,
all p-stable subgroups M <Y satisfying

S <M and Cy(0,(M)) < O,(M)

are contained in Ny (W (S)).
Concerning the notion of p-stability we collect (see 8.6.12 on page 219):

9.4.5 Let p# 2. A group G is p-stable, if G satisfies one of the following
conditions:

(1) G is p-separable and p > 5.
(2) G is of odd order.

(3) G has Abelian Sylow 2-subgroups. O
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If one uses Dickson’s Theorem quoted after 8.6.13 on page 221, then condi-
tion (3) in 9.4.5 can be substituted by

(3")  No section of G is isomorphic to SLa(p).

As we have already noted before 9.1.1 on page 226 p-stability is only in-
teresting for p # 2. But if one replaces p-stability by condition (3') (for
example in 9.4.4 (b)), one also gets nontrivial results for p = 2; see [53] and
88].3

We will use the following corollary later:

9.4.6  Let G be a p-separable group, p > 5 and S € Syl,G. Then G =
Op (G)Ng(W(5)).

Proof. Let G := G/Oy(G). Then S € Syl, G and by 9.4.4 (c)
W(S) = W(S).

From 9.4.4 (b) together with 9.4.5 (1) and 6.4.4 (a) on page 134 we get that
W(S) is a normal subgroup of G, i.e.,

Oy (GYW(S) < G.

Now the assertion follows with the Frattini argument. O

We conclude this section with a theorem of Thompson. With some right
the proof of this theorem can be regarded as the beginning of modern group
theory. It already contains the nucleus of the ideas described in this chapter.
We recommend that the reader read [91] and [92]. The original version of this
theorem differs from the one given here since at that time the ZJ-Theorem
(resp. 9.4.4) was not yet available.

9.4.7 Normal p-Complement Theorem of Thompson. Let G be a
group, p an odd prime, and S € Syl, G. Then G has a normal p-complement
provided Ng(W(S)) has such a complement.

8This paper uses the same approach as in the proof of 9.4.4.
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Proof. Note first that subgroups and factor groups of groups having a normal
p-complement, also have one. Now let G be a minimal counterexample, and
let K be the set of all subgroups of G that have a normal p-complement.
The minimality of G implies

(1) S<Gi <G = G ek

Set N := 0, (G) and G := G/N. Assume that N # 1. Then S is a Sylow
p-subgroup of G isomorphic to S. In particular W (S) = W(S) by 9.4.1.
Now 3.2.8 on page 66 shows that

Ng(W(S)) = Na(W(9)).
Hence, by the above remark Nz(W(S)) has a normal p-complement; so
G satisfies the hypothesis. If |G| < |G|, then by induction also G has a
normal p-complement and thus also G, since N is a normal p’-subgroup of
G. As G is a counterexample, we have

2) 0y(G) = 1.

By the Normal p-Complement Theorem of Frobenius (7.2.4 on page 170) the
set W of nontrivial p-subgroups W such that Ng(W) € K is not empty.
We choose P € W such that |[Ng(P)|, is maximal and show:

(3) P < @G, in particular Oy(G) # 1.

In a counterexample to (3) G := Ng(P) # G. After conjugating P by
a suitable element of G we may assume that T := Ng(P)N .S is a Sylow
p-subgroup of Gi. Then T # S by (1) and thus T" < Ng(7) (3.1.10
on page 61). For every characteristic subgroup U of T, in particular for
U= W(T), we get T < Ng(T) < Ng(U). Now the maximal choice of
|INg(P)|, implies that Ng(W(T)) € K and thus also Ng,(W(T)) € K.
Hence, by induction G has a normal p-complement, since |G| < |G| and
(G is a minimal counterexample. But then also the subgroup P < G; has
such a complement, which contradicts P € W. This contradiction proves
claim (3).

Let

G = G/0,(G)

and N be the inverse image of Nz(W(S)) in G. By (3) |G| < |G|. On
the other hand, N < G since Oy(G) =1 and W(S) # 1, so also N < G.
Now (1) implies that N has a normal p-complement. As G is a minimal

counterexample we conclude that G has a normal p-complement. This yields
together with (2):
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(4)  Ce(0y(G)) < Oy(G), and G has a normal p-complement K. In par-
ticular G is p-separable,

If G is p-stable, then 9.4.4 implies G = Ng(W (S)), which contradicts G ¢
IC. Thus, G is not p-stable, and K has non-Abelian Sylow 2-subgroups
(9.4.5). Since S and K are coprime there exists an S-invariant Sylow 2-
subgroup T of K (8.2.3). But then also Z(T) is S-invariant.

Let U be the inverse image of Z(T)S in G. Then U # G since T is non-
Abelian, and (1) shows that U has a normal p-complement Uy # 1. From

U, 05(@)] < T N 0,(G) = 1

we get Uy < Cq(O,(G)) £ Op(G), which contradicts (4). This final contra-
diction shows that G is not a counterexample. a

9.5 Fixed-Point-Free Action

As promised in Section 8.1 we show in this section—using 9.4.7—that a
group admitting a fixed-point-free automorphism of prime order is nilpotent.
We then take this as an opportunity to discuss fixed-point-free action in a
more general context proving a post-classification theorem® that states that
in general every group admitting a fixed-point-free automorphism is solvable.

It should be pointed out that this section is independent from the other
sections of this chapter, if one takes 9.4.7 for granted.

9.5.1 Theorem (Thompson [90]). Fvery group admitting a fized-
point-free automorphism of prime order is nilpotent.

Proof. Let G be a group and «a a fixed-point-free automorphism of prime
order. Then G is a p’-group (8.1.4 on page 177). Now let G be a counterex-
ample of minimal order. Then we obtain:

(1) If N <@ such that N® = N, then N is nilpotent.

(2) If N is a nontrivial proper a-invariant normal subgroup of G, then
G/N is nilpotent and G is solvable (6.1.2 on page 122).

9That is, a theorem whose proof uses the classification of the finite simple groups.
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For (2) note that («) acts fixed-point-freely on G/N (8.2.2 or 8.1.11 (c)).

We first treat the case that G is solvable. Then G contains a minimal a-
invariant normal subgroup V that is an elementary Abelian g-group.'® As
by (2) G/V is nilpotent but G is not, we get Cq(V) # G (5.1.2 on page
100). Again by (2)

G = G/Cg(V)

is nilpotent, and there exists a prime r such that
61 = Or(a) 75 1.

Now 8.1.5 on page 178 implies r # g. Moreover Cy(G1) = 1 since Cy(G1)
is an a-invariant normal subgroup of G and Cg (V) # G. Every nontrivial
power of « is also fixed-point-free on G;. Hence, the semidirect product
(a)Gy is a Frobenius group with Frobenius complement (o) (8.1.12 on
page 182). But now 8.3.5 shows that 1 # Cy(«), a contradiction.

We have shown that the minimal counterexample G is not solvable. Accord-
ing to (1) and (2) this implies that G’ does not contain any nontrivial proper
a-invariant normal subgroup. Thus, by induction we have:

(3) If 1#£U < G such that U* = U, then Ng(U) is nilpotent.

Since G is not solvable there exists an odd prime divisor ¢ of |G| and an a-
invariant Sylow g-subgroup @ of G (8.2.3). But then « leaves invariant every
characteristic subgroup W of @ and thus also Ng(W). According to (3)
N¢g(W) is nilpotent provided W # 1, and nilpotent groups possess normal
g-complements. Hence, the Normal p-Complement Theorem of Thompson
9.4.7 (here for ¢ in place of p) shows that G has a normal g-complement.
Since this complement is characteristic in G it is invariant under «. But this
contradicts (3). O

From 8.1.12 on page 182 we obtain as a corollary (using Frobenius’s Theorem
4.1.6):

9.5.2  The Frobenius kernel of a Frobenius group is nilpotent. O

It is not too difficult to construct solvable groups that are not nilpotent but
admit a fixed-point-free automorphism of composite order. The conjecture

9% is a minimal normal subgroup of the semidirect product (a)G.
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that every group admitting a fixed-point-free automorphism is solvable could
only be verified by means of the classification of the finite simple groups. In
the following we discuss this result as a typical post-classification theorem.

Recall that 8.1.11 shows that the fixed-point-free action of an automorphism
and coprime action have some basic properties in common.

Let &€ be the class of simple groups E satisfying:
There exists p € w(F) such that E has a cyclic Sylow p-subgroup.
Let K be the class of groups all of whose composition factors are in £.

From the classification of the finite simple groups one can conclude that
every simple group is in &, so K is the class of all (finite) groups. With this
in mind the following theorem proves the above mentioned conjecture.

9.5.3 Let G €K and A be a group that acts fixed-pont-freely on G, i.e.,
Ca(A) = 1. Suppose that the action of A on G is coprime if A is noncyclic.
Then G is solvable.'!

Proof. Let G be a minimal counterexample. If G contains an A-invariant
normal subgroup N such that 1 # N # G, then 8.1.11 on page 181 resp.
8.2.2 allows to apply induction to N and G/N. Thus N and G/N are
solvable, and G is not a counterexample (see 6.1.2).

Thus, G is a nonsolvable minimal normal subgroup of the semidirect product
AG. By 1.7.3 on page 38 there exists a nonsolvable simple subgroup E of G
such that

G=F x---xE, and E={F\,...,E,}.

The fixed-point-free action of A on G implies a fixed-point-free action of
NA(E1) on Ej (8.1.6 on page 178). If E; # G, then by induction Ej is
solvable, a contradiction. Hence, G = E; is a simple group from &£. Let
p € m(G) such that P € Syl, G is cyclic. Because of 8.1.11 (b) resp. 8.2.3
we may assume that P4 = P. Then A acts on Ng(P)/Cg(P), and this
action is trivial since the automorphism group of a cyclic group is Abelian.
On the other hand, A acts fixed-point-freely on Ng(P)/Cq(P) (8.1.11 (c)),
and 8.2.3 on page 185) yields Ng(P) = Cg(P). Now the Theorem of
Burnside (7.2.1 on page 169) shows that G has a normal p-complement.
This contradicts the simplicity of G. a

"' The hypothesis (|G|, |A|) = 1 in the non-cyclic case is essential since every group G
with Z(G) =1 acts fixed-point-freely on itself.
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Chapter 10

The Embedding of p-Local
Subgroups

Let p be a prime and G a group. A subgroup M < G is a p-local subgroup
of G if there exists a nontrivial p-subgroup P < G such that Ng(P) = M.
Clearly then

1 # P < Op(M).

We have seen frequently—for example, in Griin’s Theorem and in the Nor-
mal p-Complement Theorems of Frobenius and Thompson—that the struc-
ture of p-local subgroups is strongly related to the structure of G. This
connection will be the main theme for last three chapters of this book.

In the first section of this chapter we investigate p-local subgroups by means
of quadratic action which was introduced in the last chapter. In the second
section we use the proof of the p%g’-Theorem of Burnside to demonstrate
how these results can be applied. In the last section we introduce a method,
the amalgam method, that allows us to investigate groups by means of suit-
able coset graphs.

A group M has characteristic p if
CM(OP(M)) < Op(M)-
According to 6.5.8 on page 144 this property is equivalent to
F* (M) = Op(M),

and for p-separable M to



262 10. The Embedding of p-Local Subgroups

see 6.4.3 on page 134. Let M be a proper subgroup of G and p € w(M).
Then M is called strongly p-embedded in G if

IM N M9, =1 forall ge G\ M.}

We will derive statements about p-local subgroups of characteristic p of G
(in particular for p = 2) provided they are not strongly p-embedded in G.
Groups with a strongly 2-embedded subgroup have been classified by Bender
[29]. His result belongs to the fundamental theorems in group theory; see
the Appendix.

10.1 Primitive Pairs

In Section 6.6 we have called a proper subgroup M of G primitive if M =
N¢g(A) for every nontrivial normal subgroup A of M. Suppose now that
My, My are two primitive subgroups of G. Then for {i,j} = {1,2}

P 1AM, A<M NM = NMj(A):MlﬁMQ,

and this elementary property gives rise to the following generalization:

Let M;j, My be two different—not necessarily primitive—subgroups of G.
Then (M, Ms) is a primitive pair of G if P holds for {i7,j5} = {1,2}.

Let (Mi, Ms) be a primitive pair. Then (Mj, Ms) is solvable if M; and
My are solvable; and (Mj, Ms) has characteristic p if M; and M, have
characteristic p and, in addition,

Op(Ml)Op(Mg) < M; N Ms.

Note first:

10.1.1  Let M be a group of characteristic p. Suppose that U is a subgroup
of M such that U << M or Op(M) < U. Then U has characteristic p.

Proof. The case O,(M) < U is obvious. In the other case the assertion
follows from 6.5.7 (b) on page 144. O

The next statements show how to get primitive pairs of characteristic p.

'For n € N we denote by n, the largest p-power dividing n.
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10.1.2  Let My and My be two different maximal p-local subgroups of G
that both have characteristic p. Suppose that My and My have a common
Sylow p-subgroup. Then (My, M) is a primitive pair of characteristic p.

Proof. Let 1 # A < M; and A < M; N Mj,i# j. By 10.1.1 1 # O,(A)
(< M;), and the maximality of M; gives

M; = Ne(O,(A)).

Hence Ny, (A) = M; N Mj, and this is P.
Let S be a common Sylow p-subgroup of M; and Ms. Then

Op(Ml)Op(MQ) < S < M;nNMs. O

10.1.3 Let p € w(G). Suppose that every p-local subgroup of G has
characteristic p and O,(G) = 1. Then one of the following holds:

(a)  There exists a primitive pair of characteristic p in G.

(b)  Ewvery maximal p-local subgroup of G is strongly p-embedded in G.

Proof. Let M be a maximal p-local subgroup of G. Then O,(M) # 1 and
thus
Ng(M) < Ng(Op(M)) = M <G,

in particular MY # M for all g € G\ M. Moreover, also MY is a maximal
p-local subgroup.

Among all maximal p-local subgroups L < G that are different from M we
choose L such that |M N L|, is maximal.

We first treat the case |M N L|, # 1. Let
T €Syl,(M N L)and U := Ng(T).

Since U is p-local there exists a maximal p-local subgroup H of G such
that U < H. Obviously, either H # L or H # M. We may assume that
H # M (the case H = M follows with a symmetric argument, replacing L
by M). Let T < S €Syl, M. If T < S we get from 3.1.10 on page 61

T < Ng(T) < H N M,
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which contradicts the maximality of |M N L|,. Thus, we have
(') T € Syl, M.

If also T' € Syl, L, then (a) follows from 10.1.2. Hence, we may assume that
T < 51 €8yl, L.

Then there exists g € S;\T C G\ M such that 79 =T and M # MY
(3.1.10 on page 61). Now, again by 10.1.2, (M, M9) is a primitive pair of
characteristic p.

We have shown that (a) holds if |M N L|, # 1. Hence, we may assume now
that |[M N L[|, = 1, whenever M and L are two different maximal p-local
subgroups of G. But then |M N MY, =1 for every g € G\ M, and M is
strongly p-embedded in G. O

A variation of the following theorem is called the theorem of Thompson-
Wielandt.

10.1.4 Theorem (Bender [28]). Let (M, M) be a primitive pair of
G. Suppose that F*(My) < Ms and F*(Ms) < M. Then there exists a
prime p such that (My, Ms) has characteristic p.

Proof. By our hypothesis

F*(My) F*(Ms) < My N My
and by 6.5.7 (b) on page 144
() F*(My) F*(Ms) < F*(My N Ms).

Hence, a component K of M is also a component of M;NMs; and normalizes
F*(Msy). If [F*(Ms3),K] =1, then K < Z(F(M3)) (6.5.8), which contra-
dicts K’ = K. Thus, 6.5.2 on page 142 implies that K < F*(My) < M,
SO

K << F*(Ms) 9 M.

In particular, K is also a component of Ms. It follows that F(M;) < E(M>)
and with a symmetric argument E(Msy) < E(M), i.e., E(M;) = E(M>).
The primitivity of (Mj, M3) shows that E(M;) = E(M3) =1 and thus

F*(M;) = F(M;), i =1,2.
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In particular, by (') F*(My)F*(M>) is nilpotent. Let p € w(F(Mj)). Since
Op(M7) centralizes every normal p’-subgroup of M; N My we get from 6.1.4
on page 123

T(F(My)) = m(F(M2)).

Assume now that (M, Ms) is a counterexample. Then there exists
q € m(F(My)), q # p-
Set
Y1 = [My,0p(M2), Op(M)] and Yz := [Ma,Op(Mi), Op(M1)].
First we show that the case
@ V1Yo < My N Mo,

leads to a contradiction. In this case O,(M;) is normalized by Y. Thus,
we obtain a subnormal series

1.5.5 1.5.5
0,(My) < Op(M)Ya S Op(M1)[Ma, 0p(M)] S Mo,

which shows that O,(M;) < O,(M>). A symmetric argument, with O,(Ma)
and Y7 in place of Op(M;) and Y, also gives Op(Ma) < Op(My); so
Op(M1) = Op(Mz). This contradicts the primitivity of (M;, Ma).

Hence, it suffices to establish (") to show that G is not a counterexample.
Note that

Op(My) < Cap, (O (F(Mz)))  and - Og(M1) < Cip, (O (F(M))).
This implies that X := [May, Op(M1)] < Ch, (Op (F(Mz))) and

[X, 0q(M1)] < Oy (O (F(Mp))) N Cary (O (F(M2))) = Z(F(My))
< M; N My < M.

It follows that
(X, 0q(M1), Op(M1)] < Op(My) N F(Mz) < Op(Mp).
Thus [Op(M1),Oq(M7), X] =1, and the Three-Subgroups Lemma gives

Y2, O(M1)] < [X, Op(M1), O (M1)] < Op(Ma).
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This shows

Yy < Nagy(Og(M1)Op(M2)) = N, (Og(Mi) x Op(My)).
Hence Y < Njp,(O4(My)) = My N My, and with a symmetric argument
Y7 < M; N Ms. This is (//). O

In the following we investigate a primitive pair (M7, Ms) of characteristic p
of G. We set
B = Op(Ml)Op(Mg) (ﬁ My N Mg).

For i« = 1,2 let S; be a Sylow p-subgroup of M;, which contains B. We
further set

Zi = QZ(S), Vi = (zZM), W= V)
Note that V; < Q(Z(0p(M;))) and

(9.2.7 on page 235), and recall that M; is not p-stable on V; if any nontrivial
subgroup of M;/Cy, (Vi) acts quadratically on V;. The investigation of
(My, Ms) can be subdivided in three cases:

(I) Vi £ Op(M;) for some i€ {1,2}, and j # 1.
(II)  WiVa < Op(M1)NO,(Ma2), and W; is non-Abelian for some i € {1,2}.
(IIT) W1 and Wy are Abelian.

10.1.5 Let (My, M) be a primitive pair of characteristic p of G. Then
there exists i € {1,2} such that one of the following holds:
(a)  The action of M; on Vi or on Op(M;)/®(0O,(M;)) is not p-stable.

(b) W, is elementary Abelian, and the action of M; on W; is not p-stable.

Proof. We treat the three cases (I), (II), and (III) separately.

Case (I): We choose the notation such that Vi £ O,(Mz). Since V; is normal
in B we get
[OP(M2)7 ‘/17 Vl] S [‘/1, Vl] = 1.
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Hence, V7 acts quadratically on the elementary Abelian p-group
W i= 0,(Mz)/0(0,(M2)).
Moreover Chp, (W) = Op(Mz) by 8.2.9 on page 188 and thus
0p(Ma/Criy(W)) = 1.

Since Vi £ Op(Mz) this shows that the action of My on W is not p-stable.

Case (II): We choose the notation such that Wy is non-Abelian. Then there
exists x € My such that

Vi,Vi*] #1 and WVi* < M.

The second property holds since V1% < Op,(Mz) < M;. As V; and thus also
V1® is normal in O,(M>), we get

Vi, Vi*, "] < Vi, W% = L.

Hence, V1* acts nontrivially and quadratic on V;. Now (4) shows that the
action of M; on Vj is not p-stable.

Case (III): In this case the Thompson subgroup J(B) enters the stage. If
J(B) < Op(Ml) N Op(MQ), then

J(B) = J(Op(M;)) < M;,i=1,2,

which contradicts the primitivity of (M, M3). We choose the notation such
that
J(B) £ Op(My).

Let
CMQ(WQ) < D < My and D/CMQ(WQ) = Op(MQ/CMQ(WQ)).

The primitivity of (Mj, My) shows that Chu, (Wa) < Cu, (Vi) < M; and
thus J(B) < BCjy, (Wa). It follows that

J(B) N Oy, (Wa) < Op(Ciar,(Wa)) < Op(Mz),
so [Wa, J(B)] # 1. By 9.2.10 on page 237 there exists A € A(B) such that

() [Wa, A] # 1 = [Wha, A, A).
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We assume now that the action of My on Wy is p-stable. Then A < BND
and
BnNnDJd (B N D)CMQ(WQ) <4< D < Ms,

so A< BND < Op(Ma). Since [Wa, A] # 1 there exists = € My such that
[le,A] 75 1. Now
A < Op(M) < My”,

and (") implies that A acts nontrivially and quadratically on V;*. Hence
(4+) shows that the action of M;* on V;* and thus also the action of M;
on V] is not p-stable. O

10.1.6 Theorem. Let (M7, Ms) be a primitive pair of characteristic p
of G. Then My or My has non-Abelian Sylow 2-subgroups. In particular,
no group of odd order possesses a primitive pair of characteristic p.

Proof. For p # 2 this follows from 10.1.5 and 9.4.5 on page 254. Let p = 2,
and assume that the Sylow 2-subgroups of M; and Ms are Abelian. Then
O2(M7) = O2(Ms3) and (Mj, M2) is not primitive. O

It should be pointed out that 10.1.6 is essential in the proof of the p®g’-
Theorem in the next section, but none of the results coming now is used
there.

In the case p = 2 every involution acts quadratically (see Section 9.1), so
10.1.5 does not give any information about the structure of M; and Ms. In
this case one has to consider the “quality” of the quadratic action to get
further information.

For the investigation of primitive pairs of characteristic 2 we need four lem-
mata that we will prove first.

10.1.7 Let M be a p-separable group and A a p-subgroup of M satisfying
P(A) < Op(M) and A £ Op(M).

Then there exists x € Opy (M) such that for L := (A, A%) :

(a) @€ OP(L) < Opy(M).
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(b) [OP(L), Al = OP(L).
() |AJANOL(L)| =p and [ANO,(L), L] < O,(M).

Proof. According to 6.4.11 on page 140 there exists a subgroup L with
property (a) that is not a p-group. We choose L minimal among all such
subgroups. Then (b) follows. Set

L :=L/Oy(L) and Q@ := Oy(L),

so L = AQ. Moreover, A is an elementary Abelian p-group since ®(A) <
Op(M)NL < Opy(L). Let B be the set of maximal subgroups of A. By 8.3.4
on page 193

Q = (CgU)| U € B),

o) [C’Q(U),A] # 1 for some U € B since A acts nontrivially on @Q. The
minimal choice of L gives C@(U) = (). This implies U = AN O,(L) and

[U,0P(L)] < Op(L) N Opp (M) < Op(M),

and (c) follows. O

10.1.8 Let M be a group of characteristic 2 that possesses a section iso-
morphic Ss. Then M also possesses a section isomorphic Sy.

Proof. Let M be a minimal counterexample. Since O3(S3) = 1 also
M/O2(M) has a section isomorphic S3. Let

O2(M) < N 9 X <M suchthat X/N = Ss.

The minimal choice of M gives X = M (10.1.1). Let

M = M/N (= Ss)

and D € Syl; M. Then D (= C3) is a normal subgroup of M that is
inverted by every involution in M. The Frattini argument yields M =
Ny (D)N. Hence, there exist 2-elements that act nontrivially on the 3-
group D. Let t € Nj;(D) be such a 2-element. In addition, we choose the
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order of ¢ minimal with that property. Then ¢ acts as an involution on D.
Thus, 8.1.8 on page 180 gives an element d € D such that

o(d)=3 and d' = d !,
so (d,t)/(t?) = S3. The minimality of M shows that
M = Ox(M)(d,t), t*€ Ox(M),
and together with 8.2.9 on page 188 and 8.4.2 on page 198
®(02(M)) =1 and Co,p(d) = 1.

This implies that t> = 1. By 8.1.4 on page 177 there exists 1 # z €
Co, () (t). Set V := (z, 24, zd2>. Then |V| <8, and V is normal in M. The
case |V| = 8 contradicts Cy(d) = 1. Hence V = Cy x Cy and V{(d,t) = Sy,
so M is not a counterexample. O

10.1.9 Let M be a group that acts faithfully on the elementary Abelian
2-group V', and let A be an elementary Abelian 2-subgroup of M. Suppose
that CM(O2/(M)) < OQ/(M) and

(%) V/Cv(A)] < AP

Then M possesses a section isomorphic to Ss.

Proof. Among all elementary Abelian 2-subgroups that satisfy (), we choose
A of minimal order.

Assume first that |A| = 2. Then (x) implies that A € Ay (M), and the
conclusion follows from 9.3.7 on page 246.

Assume now that |A| > 2. The hypothesis Cps(Og(M)) < Oo (M) shows
that A acts nontrivially on Oy (M). Let @ < O (M) be minimal such that
Q4 = Q and [Q, A] # 1. Tt follows from 8.5.2 on page 205 that

Ay = Cx(Q)

is a maximal subgroup of A, and QA/Ay acts faithfully on Cy(Ag). The
already treated case |A| = 2—applied to the pair (Cy(Ag), QA/Ag)—gives
the conclusion if

Cv(40)/Cr (A)] < [A/Ag|* = 4.
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This condition follows from the minimality of A since

V/Cv(A)] < |APP = 4Ao]* < 4]V/Cy(Ao)l. =

For the next lemma we need some additional notation. Let X be a group
that acts on the elementary Abelian p-group Z.

QZ,X) ={A< X|[Z,A A =1+# [Z A},
q(Z,X) :=0if Q(Z,X) = &, and otherwise
q(Z,X) == min{e e R| |[A/Ca(2)|¢ = |Z/Cz(A)|, A€ Q(Z,X)}.

10.1.10 Let M be a group and V an elementary Abelian normal p-sub-
group of M, and let Z <V such that

V = (ZM) and Z < O,(M).
Suppose that there exists A < Op,(M) such that [V, A, Al =1. Then
[A/CA(V)[T < [V/Cy(A)],
where q = q(Z,0p(M)).

Proof. Let ZM ={Z,...,Z;}. Then Z;, i = 1,...,k, is normal in O,(M).
We define the series

A=Ay > 2 A1 2 A > > A

putting
Ai = CAi_1<Zz') for ¢ = 1, .. .,k‘.

Then
A = Ca(V),

and the quadratic action of A on V gives
[ZfbAi—la Aifl] =1 for 1 = 1, o vy k.

If [Z;,A;—1] =1, then A;_; = A;; and if [Z;, A;—1] # 1, then the definition
of ¢ implies

|Ai—1/Ail" < [Zi/Cz,(Ai—1)| = |ZiCv(Ai-1)/Cv(Ai-1)|

< |
< |Cy(4:)/Cv(Ai-1)l.
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It follows that

MM4P—HwMW<HMfKWZMﬂWMMﬂ

After these preparations we are now able to investigate solvable primitive
pairs of characteristic 2. We show:

10.1.11 Theorem. Let (My, M2) be a solvable primitive pair of charac-
teristic 2 of G. Then My or My possesses a section isomorphic to Sy.

Proof. As in the proof of 10.1.5 we treat the cases (I), (II), and (III) given
on page 266 separately. The notation is chosen as there. Because of 10.1.8,
10.1.9 and (+) on page 266 we may assume that for i € {1,2}

(%) |A/CA(Vy)]* < |Vi/Cy,(A)]| for all A < B with ®(A) < Cp(V;).

Case (I): Without loss we may assume that V; € O2(Ms). We apply 10.1.7
with V7 and M> in place of A and M. Then there exists a subgroup L < M
and x € Ogo/(Mz) N L such that

L= ,V%, [ViNOuL),L] < Op(My),

and
(1) Vi : Vi N Oo(L)| = 2.
Set
W .= (Vl N OQ(L))(Vlac N OQ(L))
and

Wy :=VinWn (<W).
Clearly Wy < Z(L), and thus

(2) WO = Z(L) nNwW = CvlmﬂOz(L)(Vl) - CVmOQ(L)(Vlm)
since x € L. Moreover

W,Vi] < Vi N OaL) < W,
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as V1 is normal in Oy(Ms2)V;. Similarly [W, V4*] < W, and thus
W < L.
Now [O2(Mz), V1] < V1N Oz(L) < W and [Oz(Mz),Vi'] < W imply

[O2(M3), L] < W. The nontrivial action of O?(L) on Oo(Ms) gives a
nontrivial action of L on W and thus also on W/W; (8.2.2 on page 184).
We now investigate the action of

A=V"nN OQ(L)
on V. Since

2 1 (2)
A/cav)] 2 1aywol Y 1wl S Lo (A))

we get
[A/CaV)P > Vi/Cr(A)] or |A/Wo| = 2.

The first case contradicts (x). In the second case |W/Wy| = 4. Since O?(L)
acts nontrivially on W/W;, we conclude that

L/CL(W/Wy) = SLy(2) = Sj.

Now 10.1.8 shows that My has a section isomorphic to Sy.

Case (II): We use a similar argument as in the proof of 10.1.5. As there we
may assume that Wy is non-Abelian. Then there exists © € My such that

[Vl,le] # 1 and V" < Og(Mz) < M; N M;".

The symmetry between (Vi, M) and (V1*, M1*) allows to assume—pos-
sibly after interchanging the notation—that

V1/Cvi (V)] < Vi /Cyy= (V1)

But this contradicts (x) for A =V;* and V; = Vj.

Case (III): As in the proof of 10.1.5 we use the Thompson subgroup J(B),
and as there we may assume that J(B) £ O3(Mz). Then there exists
A € A(B) such that

[W27A] 7& 1 = [WQaA7A]'
By 9.2.9 on page 236 A € Ay, (M;) and
[A/Ca(V1)| = [V1/Cvy (A)]
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(this is Q) in 9.2 on page 237). Now (x) implies
(3) [, 4] = 1.

Assume that A < O9(Ms). Since [Wa, A] # 1 there exists x € My such
that [V1%, A] # 1. Note that

A < O3(M3) = O2(M2)* < Mp",

and thus [V, 4% '] # 1 and A < B. Now A* ' € Ay, (B) and the
definition of Ay, (B) show that

A O 1 (V1)] > Vi /O (A% )],

which contradicts ().

Assume now that A £ Oy(Ms), and let L be as in 10.1.7 (with respect to
A and M = Mj). Then
Ay = AN OQ(L)

is a maximal subgroup of A. Set
Q = OXL), U = (%), and U := U/Cu(Q).
If U =1, then Q < Cg(V1)N My < M N Ms; and thus
Q = [Q A] < Ox(My N My),

since A < B < O2(M; N Ms). But @ is not a 2-group, a contradiction.
Hence, we have U # 1.

The subgroup Vi is normalized by Oa(L) since Oz(L) < AgO2(Ms). In
particular Oy(L)U < B. We now apply 10.1.10 to (LU, V;,U) in place of
(M, Z,V). As (x) implies q(V1,02(LU)) > 2, we get

[A0/Cay (U)* < |U/Cu(Ao)l.
On the other hand, since A € A(L) (C Ay(L))
(+) U/Cu(A)] < [A/Ca(U)].
Now |A/Ap| =2 gives

[A/CA(U)]P < 22|A0/Ca(U)? < 4U/Cu(Ao)| < 4|U/Cy(A)]
< 4|lA/Ca(U)];

so |A/C4a(U)| <4, and (+) yields either
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(4) Ag=C4(U) and |U/Cy(A)| =2, or
(5)  |A40/Cap(U)| = 2 and [U/Cy(A)] = 4.
In case (4) we get that |U| = 4 since L = (A, A%) for some z € L. Hence

L/Cp(U) = S5, and 10.1.8 shows that My possesses a section isomorphic to
the symmetric group Sy.

Thus, we may assume now that we are in case (5). Let Cy(Q) < W < U
such that L acts irreducibly on W. Assume first that |U/WCp(A)| # 1.
Then |W/Cw(A)| < 2, and the same argument as in case (4) (with W in
place of U) shows that [W| =4 and L/CL(W) = S3. Hence, M, possesses

a section isomorphic to Sj.

Assume now that U = WCy(A), so [U,Q] < W. Since L = AQ, V1 =W,
and U = (V1) this gives

(6) U=WV;.

Note that O2(L) and thus also Ap act trivially on the L-chief factor w.
Hence (3) and (6) imply that [U, Ag] = 1. Let

P = [(40"),Q] (< Oa(L)).
As also (AgT) acts trivially on U we get [U, P] < Cy(Q), so
[U,P,P] = 1.

If [U,P] =1, then PAy centralizes V;. On the other hand PA( is normal
in L (= QA); so PAg also centralizes (V;1) = U, which contradicts the
fact that in case (5) |Ag/Ca,(U)| = 2. Thus, we have

(7) U, P £ 1.
As P acts quadratically on V; (< U) and is normal in L, we get [U, ®(P)]| =
1. Hence (x) also holds for P in place of A. Now as before 10.1.10 yields
()
[P/CPU)I* < |U/Cu(P)| < 42

It follows that |P/Cp(U)| < 4. If @ acts trivially on P/Cp(U), then Q
also acts trivially on (A¢%)/Cp(U) (8.2.2). But then P = Cp(U), which
contradicts (7). Thus, we have P/Cp(U) = Cy x Cy and

L/CL(P/Cp(U)) = Ss;

and again 10.1.8 gives a section of M that is isomorphic to Sj. O

We conclude this section combining 10.1.3 and 10.1.11:
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10.1.12 Theorem. Let G be a group of even order and O3(G) = 1.
Suppose that for every 2-local subgroup M of G:

(1) M has characteristic 2 and is solvable.

(2) M does not posses a section isomorphic to Sy.

Then every maximal 2-local subgroup of G s strongly 2-embedded in G. O

10.2 The p*¢*-Theorem

In this section we prove:

10.2.1 Burnside’s Theorem. Every group of order p®q® (p,q € P) is
solvable.

For the proof of this theorem Burnside used a short and elegant argument
from the character theory of finite groups.? His result and that of Frobe-
nius about the kernel of a Frobenius group (4.1.6 on page 80) established
character theory as a tool in the investigation of finite groups. Sixty years
passed before Bender [30], Goldschmidt [54], and Matsuyama [80] were able
to give a proof of Burnside’s result that is independent of character theory
but much longer.

In the attempt to prove the theorem of Burnside without character theory
one can hardly avoid concepts and notions we have already met in previous
chapters:

e primitive maximal subgroups,
e the Fitting subgroup of a p-local subgroup,

e coprime and p-stable action.

Moreover, a further concept that will be central in the next chapter might
have been guessed:

e the set of nontrivial g-subgroups of a group that are normalized by a
given ¢'-subgroup.

2See [4], p. 321, or in a later presentation, for example [9].
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In the 1960s all these concepts (and their generalizations) were put into the
center of attention by the works of Thompson, Gorenstein, Glauberman and
Bender; and their impact on the investigation of finite groups is responsible
for much of the progress made in the last 40 years.

One may wonder how group theory would have developed, if Burnside had
not found this beautiful character-theoretic proof and he and his contem-
poraries had studied the group-theoretic structure of the situation more
intensively, instead.

We now begin with the proof of the theorem of Burnside. Let G be a
counterexample of minimal order.

For U < G a Sylow p- resp. g-subgroup of U is denoted by U, resp. Uj.

By 1.1.6 on page 7 we have the factorization
G = G,G,.

The minimality of G implies that every proper subgroup of G and every
factor group G/N, 1 # N < G, is solvable. Since G (as a counterexample)
is not solvable we get from 6.1.2 on page 122 that (G is a non-Abelian simple
group. In particular

1#U <G = Ng(U) is solvable.

In the following we analyze the local structure of G. The essential tool will
be 8.2.12 on page 189:

(1) Let M be a maximal subgroup of G and P a p-subgroup of M. Then
Oq(Cu(P)) < Og(M).

Let M be the set of maximal subgroups of G and

M, = {M e M| M has characteristic p},
: {M € M| M has characteristic ¢},
Mo = M\ (MpUM,).

<
|

Note that
F(M) = O)(M) x Of(M) (M €M),
SO
MeM, < FM)-=
MeM, < FM)=
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(2) Let M e M and Gy, < M. Then M € M,,.

Proof. Let @ := Oy(M) < G4. Then

(QF) = (%) = (Q%) < G,.

Thus, (Q%) is a proper normal subgroup of G, and the simplicity of G
implies that @) = 1. O

(3) Let M € Mgy. Then M is the unique maximal subgroup of G con-
taining Z(F(M)). In particular Cg(a) < M for all a € Z(F(M))#*.

Proof. Let A:=Z(F(M)). Since M € M, we get
A=A, x 4, A, #1# A,
Moreover, the maximality of M gives M = Ng(A,) = Ng(4,) and
Ag < 0y(Cm(Ap)) = Og(Ca(Ap)).

Let A< H e M. Then also A; < O4(Cu(Ap)), and (1) implies 1 # A, <
O,(H) and similarly (with p and ¢ interchanged) 1 # A, < O,(H). Hence
H e My and

O,(H) < Ca(A) < M and O,(H) < Cg(A,) < M,

so F(H) < M. With the roles of H and M interchanged we also get
F(M)<H.

Either H = M or (M, H) is a primitive pair. In the second case 10.1.4
shows that M € M, or M € M, which contradicts M € M. O

(4) Let M € Mq. Then there exist x € G\ M and M, € Syl, M such
that
M, = M,* (< M N M").

Proof. Choose G, such that M, := G, N M € Syl, M. By (2) M, < Gy,
so by 3.1.10 on page 61 there exists

re G, \ M, CG\M
such that M," = M,,. O
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(5) My = 2.

Proof. Assume that My # @ and M € M. We choose the notation such
that p > ¢. As in the proof of (3) let

Ay = Z(0p(M)) and A, := Z(Oy(M));
in addition let z € G\ M be as in (4). Then
A ALY < M N M*.

Assume first that A, and thus also A,” is cyclic. The action of A, on
A/ (< M?®) is trivial since p > ¢ (2.2.5 on page 51). Thus, (3) implies
that A," < M, so Z(F(M®)) < M. Now again (3) yields M = M?*, which
contradicts Ng(M) = M and = ¢ M.

We have shown that A, is not cyclic. By (4) there exists a Sylow subgroup
M, and an element y € G\ M such that

AAY < My = MY < M N MY,

Hence A, < MY, and A, acts on P := A,Y (< MY). Now 8.3.4 implies

®3)
P = (Cp(a)| a € A®) < M,

so Z(F(MY)) = A,YAY < M. As above (3) gives the contradiction M =
MY. O

(6) Let M € M such that Z(Gq) N M # 1. Then M € M,.

Proof. Assume that M is a counterexample. By (5) M € M,, and thus
Cu(Op(M)) < Op(M) =: P.

Let P < G,. The maximality of M yields
Z = 2(Gy) < Ne(P) < M,

so Z < P. Let Y := Z(G,) N M. Then (ZY) (< P) is a p-group. For
g € G there exist z € G, y € G4 such that g = zy. Hence

79Y — gy¥ _ ZYy;
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so (Z9Y) = (ZY)? and (Z9Y) is a p-group. By the lemma of Matsuyama
(6.7.8 on page 160) there exists T' € Syl, G such that

R = wclg(Z,T)

is normalized by Y. It follows that (Y,T) < Ng(R) < G, and (Y7T) is a
proper subgroup of G. On the other hand G = G,T" and YE = YT, so
(YT) is a normal subgroup of G. This contradicts the simplicity of G. O

(7)  Let L be a p-local subgroup of G.

(a) LNZ(Gg)=1 forall Gy € Syl,G.
(b) L has characteristic p.

Proof. Let 1 # R < Gp, and M € M such that L = Ng(R) and L < M.
In particular Z(G,) < L < M.

(a) Assume that LN Z(G,) # 1. Then M NZ(G,) #1# M N Z(G,), and
this contradicts (6).
(b) Assume that @Q := O4(L) # 1. Then Ng(Q) is a g-local subgroup of G

containing L and thus also Z(G)). This contradicts (a) (with the roles of p
and ¢ reversed). O

(8) |G| is odd.

Proof. In a counterexample let ¢ = 2 and t be an involution in Z(G3)
(3.1.11 on page 61). The theorem of Baer (6.7.5 on page 160) shows that
there exists a p-element y # 1 in G such that y' = y~!. Hence, L =
N¢g({y)) is a p-local subgroup of G containing ¢. But this contradicts (7a).

O

Now 10.1.6 on page 268 and (8) imply that G does not possess primitive
pairs of characteristic p. But because of (7b) G also satisfies the hypothesis
of 10.1.3 on page 263. Hence, for every maximal p-local subgroup M of G

IM N M9, =1 forall ge G\ M.

As we can choose M to contain G, we get G, NG,? =1 for g € G\ M,
so (1.1.6 on page 7)

|Gp|2 = [GpGy?| < |G
With a symmetric argument also |G,4|?> < |G|. But this contradicts |G| =
|Gp||Gq| since |G| # (Gl O



10.3. THE AMALGAM METHOD 281

10.3 The Amalgam Method

In this section we present a method that is particularly suited investigation of
primitive pairs (Mj, M3) of characteristic p. This method was introduced
by Goldschmidt [58] at the end of the 1970s and since then has become
an integral part of the local structure theory of finite groups.> The name
amalgam method refers to the fact that this method does not require a finite
group but can be carried out already in the amalgamated product of the
finite groups M7 and Ms. In our presentation we do not use amalgamated
products.

Let G be a group, and let P; and P, be two different subgroups of G. In
this section we do not assume that G is a finite group, but only that the
subgroups P; an P, are finite subgroups of G.

Let T" be the set of right cosets of P, and P in G. The elements of I' are
called vertices. For {1,2} = {7, j} two vertices P;x, Pjy € I' are adjacent
if

PixﬂPjy # @ and Px # Pjy7

and in this case {Pjz, Pjy} is called an edge of I'. Then I' is a graph, the
coset graph of G with respect to P, and Ps.

Note that ¢ # j if {P;z, Pjy} is an edge and that {P;, P} is an edge since
1e PNPs.

For a € T let A(a) be the set of all vertices adjacent to a.
The group G acts on I' by right multiplication
g: =T with Paxw— Pxg (g€q).

As usual we write a9 for the image of o under g, and we call a9 a vertex
conjugate to a. As

PxnN Py # @ <= Pxg N Pjyg # 9,
g acts as an automorphism of the graph I', and this action gives rise to a
homomorphism of G into AutI', the automorphism group of T'.

We first collect some elementary properties of this action.

10.3.1 (a) G has two orbits on the vertices of T, and P1 and P» are
representatives of these orbits. Every vertex stabilizer G, a € T', is
a G-conjugate of Py or Ps.

3See [7].
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(b) G acts transitively on the edges of T'. Every edge stabilizer in G is a
G-conjugate of PN Ps.

(¢) Gq acts transitively on A(a), a € T, in particular

IA(Q)] = |Ga : GaNGg| for B € Ala).

(d) (PLN Py)g is the kernel of the action of G on T

Proof. (a) Note that for Pz € T" and g € G:

Pxg = Prx <— Pz-ga’_1 =P < g € P".

(b) Let {Pyx, Poy} be an edge, so there exists z € Pix N Pyy. Hence
Pix = Pz and Py = Pz,

and the element z~! conjugates the edge {Piz, Py} to {Pi, P»}. Accord-
ing to (a) the stabilizer of {P1z, Poz} is Pi* N Py* = (P N Py)~.

(c) By (a) we may assume that o = P;. Then
Ala) = {Py| PrynPy # o} = {Pay|y € P}

Thus P; is transitive on A(«).

(d) By (a) any normal subgroup of G contained in P; NP, fixes every vertex

of T. O
An (n+1)-tuple (ag,aq,...,q,) of vertices is a path of length n from ay
to «y, if

a; € A(ajqq) for i = 0,...,n—1 and «a; # ajso for i = 0,...,n—2.

Paths can be used to define the distance d(«, 3) between vertices o, 3 € T.
Here d(a, ) = oo if there is no path in T" from « to 3, otherwise d(a, (3)
is the length of a shortest path from « to g.
The subset

{8 €T d(a, ) < oo}

*(P1 N Py)¢ is the largest normal subgroup of G in P; N Ps.
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is the connected component of I' that contains «. Any two vertices of
a connected component are joint by a path, and different connected compo-
nents are disjoint. I' is connected if ' has only one connected component.

At first sight it is not transparent why these new objects and the language
of graph theory should help to simplify the investigation of the structure of
G (or better that of P and P,). The basic reason for this phenomena is
the fact that the graph-theoretic notation allows us to describe the group
theoretic properties that we investigate in a very easy way. Of course, the
coming proofs should reveal this, but two things can be pointed out here
already:

e Statement 10.3.2 below shows that I' is connected if and only if G
is generated by the two subgroups P; and P,. This turns a fairly
unhandy group theoretic property into an elementary graph-theoretic
one that can be used easily in proofs and definitions, for example in
10.3.3 and the definition of a critical pair.

e By means of the above-defined distance, a large variety of normal
subgroups of vertex stabilizers can be defined. For example, for i € N,

G[Oi] = [ Gs.
6er
d(a,6)<1i

The reader should try to define these normal subgroups for a = P; (so
G = P1) without the help of the graph T'.

Of course, not all of these normal subgroups can be different since P; and
P, are finite. In fact, one of the essential ideas of the amalgam method is
to find out which of these subgroups are identical.

10.3.2 T is connected if and only if G = (Py, Py).

Proof. Assume first that G = (P, P»). Let A be the connected component
of I' that contains P;. Since P; and P, are adjacent also P, is in A. As
different connected components are disjoint we get that

A = APLP) _ AG

and thus A =T by 10.3.1 (a).
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Assume now that I' is connected and set Go := (Py, P,). Let
Lo :={Piz|z € Go} U{Pyx|z € Go}

be the coset graph of Gy with respect to P; and P». As we have seen above
[y is connected. Moreover I' = I'g implies G = Gy. Assume that T' # T'y.
Since I' is connected there exists an edge {«, 3} of I" such that o € Ty and
B eTl'\Ty. By 10.3.1 (a) (applied to Gy and T'y) G4 is in Gg. Since G, is
transitive on A(a) (10.3.1 (¢)) not only S but also every other element of
A(a) isin T'\ T'g. Hence, in I'g no vertex is adjacent to cv. But then Ty is
not connected, a contradiction. O

An essential tool in the investigation of coset graphs is the following elemen-
tary fact:

10.3.3 Let G = (P, P2) and U < G, N Gg. Suppose that {«, B} is an
edge of I' such that one of the following holds:

(1)  Ng,(U) acts transitively on A(S) for 6 € {a, 5}.
(1) U< Gy and U 4 Gg.

Then U acts trivially on I'.

Proof. Hypothesis (1) together with 10.3.1 (c¢) implies Hypothesis (1). Thus,
we may assume that (1) holds. Let

I = aNelW) y gNel),

Then U fixes every vertex in I'g. Let v € Ty, so there exists g € Ng(U)
and d € {a, B} such that v = ¢9. Then

A(87) = A(y) and Ne,(U) = N, (U)7.

By (1) Ng, (U) is transitive on A(69) = A(~). Moreover, one of the vertices
in {a9,39} is adjacent to v and

{ag7 ﬁg} - 1—‘0-
It follows that A(y) C I'g. Since by 10.3.2 T" is connected we conclude that
I' =Tg. Thus, U stabilizes every vertex in I'. O

We now present the amalgam method in action treating a particular situa-
tion that we will meet again in Chapter 12. For the rest of this section we
assume:
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A Let G be a group generated by two finite subgroups P, and Ps, and set
T := P, N Py. Suppose that for 1 =1,2:
Ai Cp(02(F;)) < O2(F;).
Ay T €Syl P,
As  Tg=1.
As P/Oq(P;) = Ss.
As  [Q(Z(T)), B #1.

The aim of our investigation is to show that A implies:
B P=2P=Sy or PL=P,=Cy xSy

In the following we assume A. Let I' be the coset graph of G with respect
to P and P,. According to 10.3.2 T' is connected, and 10.3.1 (d) together
with A3z shows that G acts faithfully on I'.

Let {«, 3} be an edge of T'. Since {«a, 5} is conjugate to the edge {P;, P2}
(10.3.1 (b)), the statements Ay, ..., As also hold for G, and G in place
of P and P». In this sense we will apply Ai,..., A5 to arbitrary vertex
stabilizers G, and edges {a, 3}.

10.3.4  Let {«, 3} be an edge of T.

(@) GaNGg has index 3 in G, and is a Sylow 2-subgroup of G.. In
particular Go = (Go NGga,t) forall t € G, \ Gg.

(b)  |A(a)| =3 and

O2(Ga) = [ (Ga N Gy) (=G
0€A(a)

(¢) Gq acts 2-transitively on A(w).

Proof. (a) follows from A4 and (b), (c) from 10.3.1 (c), (a). O

For aa €T let
Qa = OZ(GO[)’
Zo = (QAUZ(T))| T e SylyGa).
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10.3.5 Let ael', V4G, and T € Syl, G,. Suppose that
O(Z(T) < V < QZ(Qu) and |V QZ(T))| = 2.
Then
V = Cy(Gy) x W where W := [V,G,].
Moreover W =2 Cy x Cy and Cq, (W) = Qq, i.e., Go/Cq, (W) = Ss.

Proof. Let D € Syls G,. By 8.4.2 on page 198 we have the decomposition
V =Cy(D) x W with W :=[V,D].

As and G, = DT imply W # 1 and thus |W| > 4. Let d € D¥#. By our
hypothesis
V/QUZ(T))| = 2 = [V/QUZ(TY).

Now Go = (T, T?) shows that |V/Cy(Ga)| < 4. It follows that Cy(G,) =
Cy (D) and |W| = 4. The other statements are consequences of Ay. O

10.3.6  Let {«, 3} be an edge of T'.

(@)  Za <QZ(Qa))-
(b) QuQp=GaNGgseSyhGy.

(¢) Cq,(Za) = Qu; in particular, the Sylow 2-subgroups of G, are non-
Abelian.

(d) ZaZg is normal in Go if and only if there exists v € Aa) \ {8}
such that ZoZg = ZoZ.

Proof. (a) Let T €Syls Go. Then @, < T, and A; implies that Q(Z(Y)) <
Z(Qa)-

(b) By A4 and 10.3.4 @, and Qs have index 2 in G,NGg. Thus, it suffices
to show that Q. # Qg.

If Qo = @g, then Q, =1 by 10.3.3 and 10.3.4 since G acts faithfully on I'.
This contradicts Aj;.



10.3. The Amalgam Method 287

(c¢) By As the normal subgroup Z, is not central in G,. Thus, Z, also is
not central in T € Syls G,, since G, = (T'| T € Syla G,).

By (a) Qa < Cq,(Za). If Qo < Cq.,(Zy), then Cg, (Z,) contains a
subgroup D of order 3, and G, = DT, T € Syl, Gy, by A4. But then
Q(Z(T)) is central in G, which contradicts As.

(d) If ZoZg 4 Gq, then Z,Zg = Z,Z, for all v € A(w) since G, is
transitive on A(a).

Assume now that Z,Z3 = Z,Z, for some v € A(a), v # 3. Then Z,Z3
is normalized by G4 NG and G4 NG, and thus also by Go (A4). O

As a motivation for what will follow later we prove:

10.3.7 Let {a, (3} be an edge of I'. Then the following statements are
equivalent:

(i) B holds.
(i)  Za £ Qp-

Proof. Assume that B holds. Then by 10.3.1 (a) for ¢ € {a, 3}

Gs =25y and Qs = Cy x (9
or

Gs =2 Sy x(Cy and Q5= Cy x Cy x (.

Hence Zs = @5, and 10.3.6 (b) implies Z, £ @g.
Assume now that Z, £ Qg. Let 6 € {a, 8} and set

T .= QQQIQ and F = Q. N Qg.

10.3.6 (b) gives T' € Syl, Gs and |T/Qs| = 2. It follows that

(1) Qo Bl = 2 = [Qp: E,

(2) T = QsZo and Qn = EZ,.
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By 10.3.6 (¢) [Za,Z3] # 1 and thus also
Zg £ Qa.
Now a symmetric argument yields
(3) T = QuZs and Qg = EZg.

Since Zs is an elementary Abelian subgroup of Z(Qs) we get from (2) and
(3) together with 5.2.7 on page 106

®(Qa) = ®(E) = @(Qp),

i.e., ®(F) is characteristic in )s. Hence, ®(F) is normal in G, and Gg.
Now 10.3.3 shows that ®(FE) is trivial. We get

(4) Qo and Qg are elementary Abelian,
Moreover, T'= Q)o@ implies

(5) E = Z(T).

Let Ws := [Qs,Gs]. (1) allows to apply 10.3.5 to V = Qy, so
(6) Qs = Z(Gs) x Ws and Wz = Cy x Ch.

By (2) and (3) there exists an involution t5 in 7'\ Qs that acts nontrivially
on O%(Gs)/Ws. Hence

X5 = O*(Gj) (ts) = Sa.

Assume that Z(G,) = 1. Then |T| =8, and Z(Gg) =1 follows from (5)
and (6). Thus, G, = X, and Gg = X3 are as in B.

Assume that Z(G,) # 1. Then also Z(Gg) # 1, again by (5) and (6). On
the other hand Z(Gg) N Z(G,) =1 by 10.3.3. Since Z(G,) and Z(Gp)
are in Z(T) = E we get from (6) that Z(G,) = Cy = Z(Gp). This gives
the second possibility in B. O

Let {a,(} be an edge of I'. In order to prove that A implies B it suffices
to show—according to 10.3.7—that the assumption Z, < (g leads to a
contradiction. In doing this the following parameter b plays a central role.
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Let i be a vertex. Since Z, acts faithfully on I' there exists A € I' such
that Z,, £ Gy, in particular Z,, £ Q5. As I' is connected d(u, \) < oo, so

b = min{d(p,\) | p,A €T, Z, £ Qr}

is an integer. Moreover b > 1 since Z, < Q. A pair (a, ') of vertices is
a critical pair if

Zo £ Qn and d(a,a’) = b.
Hence, for vertices p, A € I' with d(u, A) < b the minimality of b yields

ZM S Q)\ and Z)\ S Qﬂ‘

According to 10.3.7 b =1 is equivalent to B.

In the following let (a, ') be a critical pair and v a path of length b from
a to o/. We enumerate the vertices of v by

v = (,a+1l,a+2,....,0) or v=(a,...,a —2,0 —1,d),
ie, o/ —i=a+(b—i) for 1 <i<b—1. In addition, we set

R = [Zy, Zy].

10.3.8 (a) (/@) is also a critical pair.
(b)) GaNGat1=2ZyQu and Gy 1N Gy = ZaQy -

(C) R < Z(Ga N Ga—|—1) N Z(Ga/_l N Ga/) and
R= [Zom Ga—|—1 N Ga] = [Za’a Ga’—l N Ga’]-

(d) |R|=2.
(€) Zo=[Z0,Ga] X UZ(G,)) and [Zy,Go] = Cy x Cy.

(f) |Za : Q(Z(Y))l =2 fO?“ Y Esylg Ga.

Proof. The minimality of b implies

Zo < Qa’—l < Ga’—l N Ga’ and Zy < Qa—i—l < Ga N Ga—i—l-
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Moreover, Z, £ Q. shows that
Goy-1 NGy = Zona’

since Qs has index 2 in G 1 NGy (10.3.4 and Ay). As Z, and Z, are
normal in G, and G, respectively, we get that

(,) R< Z,.NZy.
Now 10.3.6 (c) implies R # 1, thus also Z, £ @, and
Ga N GOH—I - ZQ/QOL'

Hence (a) and (b) follow, and (c) is a consequence of () and 10.3.6 (a). In
addition 10.3.6 (a), (c) show that

| Zo ) Cr(Zo)| = | Zot | Zoot (Za)| = 2 and O (Zor) = UZ(Ga N Garir)).

This implies (d) and (f), and 10.3.5 gives (e). O

10.3.9 Let a—1€ A(a) \ {a+ 1}. Suppose that (o — 1,0/ — 1) is not
a critical pair. Then the following hold:

(CL) ZoZiai1 = ZaZa-1 1 Gy.

b)) QanNQs < Ga for all B € Ala).

(¢) « and o are conjugate, and b is even.

Proof. Since (a—1,a' — 1) is not critical we get
Za-1 < Qo/—l (S Go/—l N Ga’)a

In particular b > 1 and

10.3.8 10.3.6
Za1 < ZoQuo = ZaCGa/(Za’)-

It follows that
10.3.6

Zo1,Z0] < R < Zg.

Hence, Z, 17, is normalized by Z, and G,_1 N G, and thus also by
(GaNGo-1,Zy) = Gy (10.3.4). Now 10.3.1 (c) implies (a).
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Fig. 1

Claim (b) follows from (a), 10.3.6 (c¢) and the transitivity of G, on A(«).
Note that by 10.3.1 either o € (/)¢ or a € (o/ —1)%, so

G

a € (o)) < bis even.

To prove (¢) we may assume that « and o/ —1 and thus also G, and G,/_1
are conjugate. Then (b) gives

Za < Qa’—Q N Qa’—l - Qa’—l N Qa’-

This contradicts Z, £ Q- O

10.3.10  Suppose that there exists a« — 1 € A(a) \ {a + 1} such that
(a —1,0' — 1) is a critical pair. Then b= 1.

Proof. Set Ry := [Zn—1,Zo 1] and assume that b > 1. Then Z, < Qqu+1
and Z, < Qu—1. As (a—1,a’—1) is critical, 10.3.8 applies to (a—1,a’—1)
in place of («,a’). Hence |R;| = 2 and

Ry = [Zoz—la Ga—l N Ga] < Z(Ga—l N Goz) N Z(Go/—Q N Ga’—l)a

in particular Ry < Z(Qu—1) and thus [Ry, Z,] = 1. By 10.3.8 (b) Z, and
Ga-1 NG, generate G, SO

(1) Ry < Z(Gy).
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Let a—2 € A(a—1)\ {a} (see Fig. 1).

Next we show:

(2) (a — 2,0’ —2) is a critical pair.

Assume that (o — 2,0/ — 2) is not critical. Then 10.3.9 (a), applied to
(a—1,0/—1) and a—2 in place of (o, ') and a—1, shows that Z, 17, =
Zo 175 for all § € A(a —1). With 10.3.1 (c) we get®

Zoz—l—l Zo = Za—l—l Za—|—2-

The minimality of b yields Zy11Z412 < Qn . But then also Z, < Q./, and
(a, @’) is not a critical pair. This contradiction shows (2).

Set Ry := [Za—2,Za—2]. According to (2) a— 2 and (a,a’) satisfy the
hypothesis. Hence, we also get for these vertices that |Ry| = 2 and

(3) Ry = [Z4—2,Ga—2 N Go—_1] < Z(Ga-1)
By 10.3.1 (c) there exist y € G4—1 and = € G, such that
(—2)Y =a and (a+1)* = a—1.
Hence
[ZayGo N Go—1] = [Za—2,Ga—2 N Ga—1]Y = RY < Z(Gp-1),

and

10.3.

oo

RIL’

© [ZozaGa N Ga—l—l]m = [ZomGa N Ga—l] = R2y < Z(Ga—l)-

It follows that

(4) R < Z(Gay1)
In addition, (1) and 10.3.3 give

(5) RN R = 1.
Next we show:

(6) b = 2.

®Rotate around « such that o — 1 goes to a + 1.
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Assume that b > 2. Then Z, < Qu_2, and by (3) and 10.3.6 (a) Ro
centralizes Z, and G,—1. Since Gy = (Zy,Go N Go—1) we conclude that
Ry centralizes G,_1 and G,. Hence 10.3.3 yields Ry = 1, which contradicts
|Ro| = 2.

To treat the remaining case b = 2 we set
Vo = {Zg| B € Ala)) (2 Ga)

and
Vat1 == (Zg| B € Ala+1)) (dGa).

Note that V, < Q. and V11 < Q1 since b > 1. Moreover
Za = (Q(Z(Ga N Ga+1))Ga> < Va
since V, is normal in G, similarly Z,411 < V,41. Hence

(7> ZaZa+1 < Vo Va—!—l-

As Ry < Z(G,), the 2-transitive action of G, on A(a) (10.3.4 (c)) implies
V! = Ry < Z(G,).

We now derive a contradiction showing that V, is Abelian: Since V, is
generated by involutions we get that V,/R; is elementary Abelian, so

Ry = ®(V,).
With the same argument (4) implies
R - (D(Va—l—l)-

Let
Vo i=Vo/Za.

From 10.3.8 (f) we get |Zg/ZaN Zg| =2 for all B € A(a), so |Zs| =2. In
addition, V,, is generated by the three subgroups Zg, 3 € A(a), thus

Vol <8.

Set
W = Va N Va_|_1 (S] Ga N Ga_|_1).
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By (7) ZaZat+1 < W, and the definition of V, gives
(8) Vo = (W),
Moreover by 5.2.7 on page 106

(W) < O(Vy) N ®(Vayr) = Ri N R 2 1.

Hence W is elementary Abelian, and V. # 1 shows that |V, /W| > 2.
We investigate the action of G, on V. The kernel of this action contains
Qo since [Go—1 NGy, Zo—1] = Ry < Z,,. Set

Vo = [VouOQ(Ga)]-
If Vo = 1, then W is normal in G, and V. = 1. But this contradicts
V! = Ry and |Ry| =2.
Now let Vo # 1. Since |V,| < 8 we get

(9) Vol = 4.

Assume first that |V,/W| = 2. Let x € G such that W?* # W. Then
Vo = WW?* and thus W N W?* = Z(V,) and |Vo,/W N W?* = 4. Let
D € Syl; G,. The nontrivial action of D on V, implies a nontrivial action
of D on V,/W N W?. Hence, all maximal subgroups of V,, that contain
W N W?*, are D-conjugates of W. But then every element of V,# is an
involution and V,, is elementary Abelian. Again this contradicts V. = R;.

We have shown that
Vo /W| > 4.

Because of (7) and |V,| <8 we get
(10) Val=8 W = ZyZoy1 and |[W]=2.

As Zy < Gy and Z, £ Qn we get that [V, Zo] # 1. On the other hand,
b =2 and thus

[Va;Zo/] S [Vaava—i-l] S W7

so W = [Vg, Zy]. But then <WGQ> = Vo, which contradicts (8), (9) and
(10). O
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10.3.11 Theorem. Suppose that A holds. Then either

P1§P2§S4 or P1§P2§CQXS4.

Proof. Assume that G is a counterexample. Among all (G, Py, P»,T) that
satisfy A but not B, we choose (G, P;, P»,T) such that |T'| is minimal. Then
b>1 (10.3.7) and (a—1,a/—1) is not critical for alla—1 € A(a)\{a+1}
(10.3.10). Hence 10.3.9 implies:

(1) b=0 (mod2) and X := Qu N Qu+1 I Ga.
Moreover by 10.3.3 (b) and 10.3.4 (a) |Qq : X| =|Qa+1 : X| = 2. Let
D € Syl;G, and G, = G./X.

Then G, is a group of order 12 and_@a a normal subgroup of order 2.
It follows that D is also normal in G,. Let X < L < (G, such that
L = DQ,,,. We obtain:

2a) L is a normal subgroup of index 2 in G4,
2b) L= Ss,

(

(

(2¢) Syl L={Qs| b € Ala)},

(2d) O2(L) =X =QaNQg for all B € Aa),
(
(

2e Qa—i—l = Za/OQ(L) (1038 (b)),

)
2f)  CL(O2(L)) < O2(L).

For the proof of (2f) note that Z, (<JG,) is contained in Q441 and thus
also in Oy(L). Hence

10.3.6
Cr(O2(L)) < Cp(Za) < QaNL < 02L).

According to Ay there exists an element ¢ € Goy1 \ Qa+1 such that
ol = a+2 und e Qat1-

Thus Qas1 = (Qax1)t is a Sylow 2-subgroup of L (< G,) and L' (<
Ga+2). First we show:

(3) O2(L) is not elementary Abelian.
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Assume that O2(L) is a counterexample. Then by (2b), (2d), A; := O2(L)
and Ay := Os(L!) are two elementary Abelian subgroups of index 2 in
Qo+1- If Aj = Ag, then A; is normal in (G,,Gq42) and thus also in

<GonGa N Ga—l—laGa—i—l N Ga+2> = <G047Go¢+1> = G.

But this contradicts A3 and (2f).

We have shown that A; # As. By (2b), (2¢), and (2f) Qa1 is non-Abelian;
SO

A=A N Ay = Z(QQ_H) and |Qa+1/A| = 4.
If O?(Gay1) acts trivially on Qq1/A, then
(Ga O%(Gart1)) < Ne(Ar),

which contradicts 10.3.3. Thus O?(Gaq41) acts transitively on (Qaq1/A)%.
But then every element of Qf 41 1s an involution and Q41 is elementary
Abelian, again a contradiction. This shows (3).

We now set

Go := (L,L"),

and denote the largest normal subgroup of Gg in Q,+1 by (. Note that
Gl = Gy and thus also Q' = Q. Next we show:

(4) (@, D] # 1.

For the proof of (4) assume that [@, D] =1 and set
Go = Go/Q.

Because of Qu11 € Syl, LN Syl, LY and (2) the quadruple
(Go, L, L', Qat1)

satisfies the hypotheses Ay, A3, A4. Moreover, since [Q,D] =1 10.3.6 (c)
and 8.2.2 on page 184 imply

—

W = [Za,D] #1 (Q < W < Oy(L)),

and C;(Oz(L)) < O3(L); so also A; and Ajz hold.

5Tilde instead of bar convention.
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Now the minimality of |T| is used. Since |Qu+1| < |T| we get
LS or L=Cyx Sy
In particular, by 10.3.5
W = [02(L),0%(D)] £ Os(L),
and W < Z, implies Z, £ Oa(L'). Now (2b) gives
O2(L) = (02(L) N Oz(L")) Za.
Since Z, < Q(Z(02(L))) we get
B(02(L)) = ®(0a(L) N Oz(L")),

and conjugation with ¢ shows that ®(O2(L)) = ®(O2(L!)). But now—as
in the proof of step (3)—®(Oz(L)) is normal in (G4, Gat2) = G, and As
yields ®(O2(L)) = 1. This contradicts (3), and (4) is established.

(5) Let § € A(a) and v € A(B) \ {a}. Then (Z,, Z,) is not a normal
in L.

We fix the notation A(S) = {«,v,0} and set
Vg = <Za,Z,y,Zg> (< Glg)

Every x € Qq \ Q3 interchanges v and § and normalizes L (see (2a)). If
(Zo, Zy) is normal in L, then also (Z,,Zs) = (Za, Z,") is normal in L.
This implies that V3 is normal in L (£ G, NGg), which contradicts 10.3.3.

(6) Let b>4, a—1€ A(a)\{a+1} and a—2 € A(a—1)\ {a}. Then
(v — 2,0/ —2) is a critical pair.

Assume that (o — 2,0’ — 2) is not critical. Then Z,_2 < Qu 3N Qu_o.
Since by (1) o — 2 is conjugate to « we get,

1) 10.3.8 (b)
Za—2 < Qa’—?» N Qa’—2 = Qo/—2 N Qo/—l < Ga’—l N Ga’ = ZaQoz’a
$O0 [Za—2,Z0| < [Za, Zo) < Zo. Hence Zy9Zy (< Qo N Qa—1) is nor-
malized by Z, and also by Qn—1 (< Ga—2 N Gy). Now (2) implies that
Zo—2Z¢ is normal in L, which contradicts (5).
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In the following let a —1 € A(a) \ {a+ 1} and z € L (< G,) such that
(¢ +1)* =a —1. Then
a—2:= (a+2)°

is adjacent to a — 1 and different from o and « + 2.

Let b>4. By (6) (o —2,0a/ —2) is critical. Hence 10.3.8 implies
Ry = [Za—2aZa’—2] < Z(Ga—2 N Ga—l) N Za’—Z'

In addition, b > 4 implies Z, < Qu_2, thus also [Rs, Z,] = 1. Now (2)
gives [Ry, L] =1, and

Ry < Z(Gat2N Gag1)

since x € L.

As also (a/,a) is a critical pair (10.3.8 (a)) there exists o’ + 2 such that
d(o/,;a/ +2) =2 and (o/ + 2, + 2) is critical. Assume that b > 4. Then
Zaurg < Qa/,Q and thus

[R2’Z04’+2] =1

since Ry < Z,/_9. Hence

10.3.8 (b)
Ga+2 N Ga+3 = Qa+22a’+2

is centralized by Rs. It follows that Ry < Z(Gy42) and also Re < Z(Gy—2)
after conjugation with x € L. This contradicts the action of Z,/_o5 on Z,_o,

see 10.3.8 (b), (e), and (f).

We have shown:

(7) b < 4,

We will now derive a final contradiction showing that (7) and (4) contradict
each other.

As Q < O9(LY) < Qa2 we have

(/) [Q,Za+2] = 1.

We now distinguish the two cases Z,19 £ O2(L) and Zyyo < Oz(L).
In the first case Qq4+1 = O2(L)Zy+2 and

L = (Z%.,) O2(L) = CL(Q) Oz(L).
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This implies O?(L) < CL(Q) since Q is normal in L. In particular [Q, D] =
1, which contradicts (4).

Thus we are in the case Zo12 < Oz(L). Then Z,i9 < Qq, and (7) and (1)
show that b = 4. Hence (6) implies

Zot2 % Qa—2 = Qat2)r)

and L' is a normal subgroup of index 2 in G,_2. The subgroup

(Za2)®™) (< Go)

contains a Sylow 3-subgroup Dy of G,—2. Now as above (') and @ < Gy
show that [@Q, Ds] = 1. This contradicts (4) since D9 is a Gg-conjugate of
the Sylow 3-subgroup D of G,. O

We conclude this section with two examples of groups satisfying A and thus
also B. They are also examples for the two alternatives of B.

(1) Let G be the symmetric group Sg and
a:= (12), b:= (12)(34)(56),

and let

Then for z € G
re P << {1,2}* ={1,2} < {3,4,5,6}" ={3,4,5,6}.

Thus
P = (a) X GLQ = Oy x 54,7

O2(P1) = (a) x {(34)(56)) x ((35)(46)),

and
T := Og(Pl) <(34)> ~ Syl2 Py.

Similarly for z € G and § := {(12), (34), (56)}
rTE P <— QF=0Q.
Hence P5 acts on 2. The kernel of this action is

N = ((12)) x ((34)) x ((56)),

"Gip:={x e G| 1" =1 and 2% = 2}.




300 10. The Embedding of p-Local Subgroups

and
PQ/N = S & S5,

It follows that N = O2(P;) and

N{((35)(46)) =T
is a Sylow 2-subgroup of P,. Note further that P; # P, and |P : T| =3 =
|Py : T|, so PLN P, =T. In addition

Gl 6

G:(P,Py)| < =
G (P o)l < |P,P,|  3-48

=5

and thus G = (P;, P») since Pj is not contained in the simple group Ag (see
also 3.1.2 on page 57). This shows that the triple ((Py, P»), P1, P>) satisfies
A.

It should be noted that the triple (Ag, P1 N Ag, P> N Ag) is an example for
the other alternative in B.

(2) Let G := GL3(2) be the group of invertible 3 x 3-matrices over Fo. Let
P be the set of all z € G of the form

a b c
T = 0 d e |,
0 f g
and P be the set of all x € G of the form
a b c
xr = d e [ |,
0 0 g

a,b,c,d,e, f,g € Fo. Then P, and P, are subgroups of G. The mappings

b,CEFQ} = Oy x Oy,

w1: P — SLa(2) such that x — <

w2: Py — SLy(2) such that x —

QU X Q.
S o

are epimorphisms with kernels

1
Ker p; = {

Ker ¢ = {

oo~ OO
O = O O = o
s ) = O O

|C,f€F2} >~ Oy x Os.
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As Ker ¢; (i =1,2) has a complement in P; that acts faithfully on Ker ¢;,
we get

P1 = S4 = Pg.
Moreover
1 a b
Plﬂpg—{ 0 1 c a,b,CE]FQ}
0 0 1

is a subgroup of order 8 and thus a Sylow 2-subgroup of P; and P,. Since

G| 168

G: (P, P)] < =
| < 1 2>| = |P1P2| 79

<3

and the order of G is not divisible by 16 we get G = (P;, P,). Hence, the
triple ((P1, P3), P1, P») satisfies A.
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Chapter 11

Signalizer Functors

In previous chapters it became quite clear that normalizers of nontrivial
p-subgroups (i.e., p-local subgroups) are of particular importance for the
structure of finite groups. In this chapter we introduce another important
concept that in a certain sense is dual to the concept of normalizing.

Let G be a group and A a subgroup of G. While the concept of the norma-
lizer of A deals with subgroups U satisfying AV = A, we are now interested
in subgroups U satisfying U4 = U.

This dualization of the notion of a normalizer is one of the fundamental
ideas in the proof of the theorem of Feit-Thompson. It was then Gorenstein
who developed the general concept of a signalizer functor [60], one of the
great achievements in group theory.

The goal of this chapter is to give a proof of the Completeness Theorem of
Glauberman [52]. Two important special cases of this theorem (r(A)> 4
and p = 2) had been proved earlier by Goldschmidt ([56], resp. [55]).
Another proof was given by Bender [31]. Later this proof was generalized
by Aschbacher [1] to obtain a new proof of the Completeness Theorem.

In this chapter, A is always a p-group, while the A-invariant subgroups
under consideration usually are p’-subgroups. Therefore we will frequently
use elementary facts about coprime action, as given in 8.2.2, 8.2.3, 8.2.7,
and 8.3.4. We will refer to such properties using the abbreviation (cp).

We find it appropriate to regard A not as a subgroup of G but as a group
that acts on G.

303
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11.1 Definitions and Elementary Properties

In the following p is a prime and A is a noncyclic elementary Abelian p-
group that acts on the group G. Note that for every a € A the fixed-point
groups Cg(a) are A-invariant since A is Abelian.

Let U be an A-invariant p’-subgroup of G. Then 8.3.4 on page 193 implies
that

(+) U= (Cgla)NU| aec A7),

and this gives rise to the following generalization.

Let # be a mapping that associates with every a € A# an A-invariant and
solvable p'-subgroup of Cg(a).! This subgroup is denoted by §(Cg(a)), so

0(Cg(a)) := d’.

By Wlg(A) we denote the set of solvable A-invariant p’-subgroups U < G
satisfying
Ca(a) N U < 6(Cg(a))for all a € A7,

In other words, for U € Vlg(A)
(+) U = (0(Cgla)) NU| a € AF).

Moreover, it is clear from the definition that every A-invariant subgroup of
U is again in y(A).

The mapping @ is a solvable A-signalizer functor on G if
S 0(Cg(a)) N Cg(b) < B(Cq(b)) for all a,b € A*,
or equivalently

S’ 0(Cg(a)) € Vg(A) for all a € A7,

The solvable A-signalizer functor 6 is complete if /ly(A) contains a unique
maximal element.? If 6 is complete, then the unique maximal element of

Ng(A) is denoted by 0(G).

Let 6 be a solvable A-signalizer functor on G and set

E = (0(Cg(a))| a € A™).

"Most results of this section also hold without the solvability requirement.
2With respect to inclusion.
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Property (+) implies that 6 is complete if and only if E € Vlg(A). Thus if 0
is complete, then F = 6(G).

The goal of this chapter is to show that 6 is complete if r(A) > 3—this is
the Completeness Theorem of Glauberman.

For an A-invariant subgroup H of G
Or: a— 0y(Cyla)) = 0(Cga)) N H (ac AY)
is the restriction of § to H. Here
oy (4) = {U € Wg(4)| U < H}.
If 6 is complete, then also 0y is complete and
Op(H) = 0(G) N H.

If O is complete, we set O(H) := 0y (H).

Condition &’ says that for every a € A% the restriction 0cq(a) 1s complete
with 6(Cg(a)) being the unique maximal element. Evidently also 0 (p)
is complete for every nontrivial subgroup B < A, and

0(Ca(B)) = 0(Ca(a)) N Ca(B) = bg# 0(Cc(b)) (a€ B7).

Before we continue with properties of signalizer functors we present a typical
example:

11.1.1  Let p be a prime and
0:a— Oy(Cqla)) (ac A¥).

(a)  Suppose that Cg(a) is solvable for all a € A*. Then 0 is a solvable
A-signalizer functor on G.

(b)  Suppose that G is solvable. Then 0 is complete and 0(G) = Oy (G).

Proof. (a) For a,b € A" 8.2.12 on page 189 gives
Op(Cala)) N Ca(b) < Oy (Cogpy(a)) < Oy (Ca(b))

Thus S holds.
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(b) Again by 8.2.12
0(Ca(a)) = Op(G) N Ca(a),
so Oy (G) € Vg(A) and
Op(G) = (0(Cila)| a € AT) € Ug(A).
Hence 6 is complete and 6(G) = O, (G). 0

In the following 6 is a solvable A-signalizer functor on G. We set:
C, = 0(Cg(a)) for a € A%,
Cp := 0(Cg(B)) for 1 # B < A,
Vg(A): the set of maximal elements of /ly(A),
and for a set 7w of primes
No(A,m) := {U € Wg(A)| U is a w-group},

Ng(A,m): set of maximal elements of Wg(A, ).

11.1.2  Let X,Y € Wy(A) such that XY =Y X. Suppose that

(1) Y < Ng(X), or
(1) XY is solvable.

Then XY € llp(A).

Proof. Also in case (1) XY is solvable (see 6.1.2 on page 122). Thus, in
both case XY is an A-invariant solvable p’-group. Hence, 8.2.11 on page
188 implies

Cxy(a) = Cx(a)Cy(a) < C, for all a € A*,
so XY € llp(A). O

11.1.3 Let N be an A-invariant normal p'-subgroup of G and G =
G/N. Then the mapping

0:a+ 0(Cxa)) :=C, (a € A¥)

is a solvable A-signalizer functor on G, and Wg(A) C W5(A).
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Proof. Let a,b € A* and M := NC,, so

M = 0(Cs(a)) and Cy(0) 'L Trr(h).
It follows that
Cu(b) =" Cn(b)Cc,(b) = Cn(b) (Ca N Cg(b)) < NO(Cal(b)),
and thus
B(Ca(a)) N Calb) = Cyr(b) = Cur(b) < B(C(b)).

Similarly for U € lp(A)

11.1.4  Assume in 11.1.3, in addition, that N € Vlg(A). Then llg(A) =
N5(A). In particular 6 is complete if and only if 0 is complete.

Proof. Let N <U < G such that U € Il5(A). According to 11.1.3 it suffices
to show that U € lly(A).

For a € A%
Cu(a) 2 Cy(a) < B(Cg(a)) = To = CuN/N
and thus
Cy(a) < NC, N Cg(a) = Cn(a)Cy < C,
since N € lg(A); so U € Vg(A). O

We now set

11.1.5 Let U € Ny(A). Then 7(U) C w(6).
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Proof. By (cp) for every q € w(U) there exists an A-invariant Sylow ¢-
subgroup @ of U. Moreover, since A is noncyclic there exists a € A such
that Cg(a) # 1 (see 8.3.4). As Cg(a) < Cy(a) < C, we get g€ w(h). O

It is clear that the restriction of 0 to A-invariant subgroups and the solvable
A-signalizer functor @ (as in 11.1.3) can be used in proofs by induction. But
in this context another variation of 6 that reduces the number of primes in
7(0) is more important.

Let 7 be a set of primes such that p € 7.3 We apply 8.2.6 (d) to the solvable
and A-invariant p’-group C, = 6(Cg(a)) (a € A¥). Then C, contains a
unique maximal AC4-invariant m-subgroup,* and this subgroup we denote
by QW(CG(G))

11.1.6  The mapping
Or:a— 0:(Cq(a)) (ac A¥)
is a solvable A-signalizer functor on G satisfying

7(0z) C 7 and {U elWg(A )| U4 = U} C Uy (A).

Proof. Let a,b € A*. Then 6,(Cg(a)) N Cq(b) is an AC-invariant 7-
subgroup of Cy. Thus, 0,(Ca(a)) NCq(b) is contained in the unique maxi-
mal AC s-invariant m-subgroup 6.(Cq(b)). This shows that 6, is a solvable
A-signalizer functor on G.

Clearly 7(6;) C m, and the other property again follows from the unique-
ness of 0,(Cg(a)). O

In the proof of the next lemma we use an argument that is also useful in
other situations.

11.1.7  Let A be an elementary Abelian p-group with r(A) > 3 that acts
on the group X, and let p # q € w(X). Suppose that Q1 and Qo are two
A-invariant q-subgroups of X such that, for D := Q1 N Q3,

Q1 # D # Q.
Then there exists a € A% such that
Ng(D) N Cg,(a) £ D fori=1,2.

3In this context observe that 1 is the only m-subgroup for 7 = @.
4 AC a-invariant means A-invariant and Ca-invariant.
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Proof. Since Q1 # D # Q5 we get
D < Ng,(D) =: N; for ie{l,2};

and 8.3.4 on page 193 shows that N; is generated by the subgroups Cy;,(B),
B < A, and r(A/B) < 1. In particular, for ¢ = 1,2, there exists a maximal
subgroup B; of A such that

Cn,(B;) £ D.
As r(A) >3 we get BN By # 1. Now choose 1 # a € By N Bs. O

Our first major result is:

11.1.8 Transitivity Theorem. Let 0 be a solvable A-signalizer functor
on G and q € w(0). Suppose that r(A) > 3. Then the elements in 3(A,q)
are conjugate under Cjy.

Proof. Assume that the assertion is false. Among all pairs of elements of
V5(A, q) that are not conjugate under Cy we choose @1 and @ such that

D = Q1N Q2
is maximal. Set
N := Ng(D) and N, := NN C, (a€ A7).
By 11.1.7 there exists a € A# such that
NoeNQ1 £ D and N, N Q2 £ D.

Moreover, N, is an A-invariant p’-group. Thus by 8.2.3 (b) and (c) there
exists an element ¢ € Cy,(A) (< C4) such that

E := {(Na N Q1)%, No N Q2)

is an A-invariant g-subgroup of N,. As D and E arein lly(A4,q), by 11.1.2
also DE € ly(A, q). Hence, there exists Q3 € (A, q) containing DE, so

D < D(Na N Ql)c <@Qi1°NQ3 and D < D(Na N Qg) < Q2 N Q3.

The maximal choice of D implies that Q¢ and QX3 are conjugate under C'4
as well as ()2 and @)3. But then also (); and ()2 are conjugate under C'4, a
contradiction. a

We note two corollaries of the Transitivity Theorem:
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11.1.9 Let q € w(0) and Q € Wy(A,q). Suppose that r(A) > 3. Then
the following hold:

(a)  For every H € Wlg(A) there exists ¢ € C'q such that Q°N H is an
A-invariant Sylow g-subgroup of H.

(b) Cq(B) is an A-invariant Sylow q-subgroup of Cp for every 1 # B <
A.

Proof. (a) Every A-invariant Sylow g-subgroup @1 of H is in (A, q) and
thus contained in an element Q3 € l5(A, q). By 11.1.8 there exists ¢ € Cy
such that Q2 = Q°¢, and QN H = (1 follows.

(b) follows from (a) (with H := Cp) since C4 < Cp. O

11.1.10 If |7(0)| <1 and r(A) > 3, then 0 is complete.

Proof. The case w(f) = @ gives 0(G) = 1. Assume that 7(0) = {¢}. Then
Ng(A) = Ng(A, q), and there exists @ € l5(A) such that C4 < Q. By 11.1.8
Q@ is the only element in /5(A,q). O

We conclude this section with an example that shows that one cannot drop
the hypothesis r(A) > 3 in the Completeness Theorem of Glauberman
(11.3.2).

Let ¢ be an odd prime and V an elementary Abelian group of order ¢ with
generators v, w, i.e.,

V = (v) x (w) 2 C; x C,.°

Let z,t,z € AutV be defined by

(v, w®) = (v,ow),
(’Ut,’wt . (U_l, w)’
(v*,w?) = (v wl),

5V is—written additively—a vector space over F, with basis v, w.
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and let U be the subgroup of AutV generated by x,t,z. Then

[t,2] = [z,2] =1 and 2z' =271

Let H be the semidirect product of U with V. We identify U and V with
the corresponding subgroups of H. Then

G = V{x)

is a non-Abelian normal subgroup of order ¢> and A := (¢, z) an elementary
Abelian subgroup of order 4 in H satisfying:

() G = (z,w) = (Ca(z),Ca(t)),
(") () = (v) < Calt2).

We now define
0(Cq(t)) := Cq(t), 0(Cq(z)) := Cg(z), and 6(Cg(tz)) = 1.

By () 6 is a solvable A-signalizer functor on G.

Assume that 6 is complete on G. Then by (”) G is the maximal element of
Ng(A). But then Cg(tz) = 0(Cq(tz)) = 1, which contradicts (). Hence, 6
is not complete.

11.2 Factorizations

As in the previous section, A is a noncyclic elementary Abelian p-group that
acts on the group G, and 6 is a solvable A-signalizer functor on G.

In earlier chapters we have learned that global properties of groups can be
deduced from local properties carried by their p-local subgroups.

In the case of signalizer functors we follow a similar strategy. Now the
carriers of local information are not the p-local subgroups, but the #-local
subgroups: the normalizers of nontrivial subgroups of ly(A).

We introduce the following notation:

For g € m(0) set 0y := 0r(9)\(q}, Where the signalizer functor on the right-
hand side is defined as in 11.1.6. Then @ is said to be locally complete on
G it
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e Oy, ) is complete for all nontrivial U € Wp(A), and

e 0y is complete for every ¢ € m(6).

Actually, this notion is rather unnecessary since it will turn out in the next
section that for r(A) > 3 locally complete solvable A-signalizer functors
are complete. But we have introduced this notion for two reasons: Firstly
it should again emphasize the importance of local properties in group the-
ory. Secondly it can be used to partition a long proof into independent
intermediate results.

In this section we deal with the case w(6) # {2,3}, in particular with the
case p = 2. We will show that in this case every locally complete solvable
A-signalizer functor 0 with r(A) > 3 is complete.

11.2.1  Let G be a p'-group and let X and Y be A-invariant subgroups of
G. Suppose that

(1)  Cg(a) = Cx(a)Cy(a) for all a € A%, and
(2) X is Cg(A)-invariant.

Then G = XY.

Proof. Let g be a prime divisor of |G| (for G = 1 there is nothing to
prove). First assume that G is a nontrivial ¢-group, so Z(G) # 1. Since A
is noncyclic there exists a € A% such that

N = CZ(G)(“) 75 1.

It is evident that N is A-invariant and that G := G/N satisfies the hypo-
thesis (with respect to X,Y). Using induction on |G| we may assume that
G = XY, so

G = XYN = XNY = XCqla)Y 2 XV

We now deduce the general case from the case just treated.

Let a € A7. According to (cp), applied to Cy(a), Y, and G, there exists
an A-invariant Sylow g-subgroup of G such that

QNY €Syl,Y and QN Cy(a) € Syl,Cy(a).
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Moreover, since X, Cx(a) and Cg(A) are Cg(A)-invariant we get from
8.2.5 on page 186 that

XNQEeSyl,X, Cx(a) N Q € Syl,Cx(a) and Cq(a) € Syl,Cg(a).

As XNY and Cxny(a) both are Cy (A)-invariant, the same argument also
yields
XNYnaQ e SquXﬂY and Cxny(a) N Q € Squ Cxny(a).

Now
Cola)] = [Cala)ly € [Cx(a) Cy (@),

= [Cx(a)lq|Cy (a)lq |Cxny (a)[;*
= [Cx(a) N Q[|Cy(a) N Q||Cxny(a) N Q7!
= [Cxng(a) Cyng(a)l,

and thus Cg(a) = Cxng(a)Cyng(a). Since also QN X is Cg(A)-invariant
the above proved case gives Q = (Q N X)(Q NY). It follows that

QI =1XNQIY NQIXNY NQI™" = [X[|Y]( X nY[;! = [XY],

Hence |Q| divides |XY| for every ¢ € 7(G), and G = XY O

In the following the notation is chosen as in Section 11.1. In particular

Cy := 0(Cg(a)) for a € A*¥ and Cp := 6(Cq(B)) for 1 # B < A.

11.2.2  Let 0 be locally complete on G and M € Wy(A). Suppose that
|7(0)| = 2 and there exists an A-invariant subgroup F < F(M) such that

Oy(F) # 1 for every q € w(0).

Then M is the unique element in y(A) containing F.

Proof. Let w(0) = {q,r}. We proceed by way of contradiction. Let (F, M)
be a counterexample such that F'is maximal, and set

F, = O4(F), F, = O,(F) and N, := Ng(F,).

Note that 6y, is complete since Fj; € llg(A). We first show:
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() M is the unique element in Wy(A) containing 6(Ny), ¢ € 7(0).

Let
O(Ny) < L € y(A).

Assume first that F, = Oy(M). Then M < 6(N,), and the maximality of
M yields §(N) = M = L.

Assume now that F, < Oy(M) and set

F = NOq(M)(Fq) X OT(M)

Then F is A-invariant and F < F. Hence (f , M) satisfies the hypothesis
but is not a counterexample. Thus also in this case M = L, and (') is
proved.

Now let FF < H € Wy(A), so

")
Nu(F,) < 6(N,) < M.

It follows that F, < Oy (Ng(Fy)), and 8.2.13 on page 190 implies that
F, <Oy(H)=0,(H).

The same argument with the roles of r and ¢ reversed also shows that
F, < Op(H) = Oy(H). Thus F < F(H), and the pair (F,H) satisfies
the hypothesis. Now either (') also applies to (F, H), or (F,H) is not a
counterexample. In both cases 6(N,;) < H since F < 6(N,). Hence ()
shows that H = M. But then (F, M) is not a counterexample. O

The following remark describes a situation we will meet in the next proofs.

11.2.3  Let G be a p'-group. Suppose that
0(Cq(a)) = Cg(a) for all a € AT,

Then the following hold:

(a) WNg(A) is the set of all A-invariant solvable subgroups of G. In parti-
cular, every A-invariant Sylow subgroup is in g(A).

(b) 0 is complete if and only if G = 0(G).



11.2. Factorizations 315

(¢c) Let 8 be locally complete on G. Then

1 75 U e |/|9(A) = Ng(U) € |/|9(A) O

In the following we investigate a factorization of G:
G = KQ with K,Q € ly(A).

Then G is a p/-group, and for all a € A%

8.2.11

Ca(a) Ck(a)Cqla) = 0(Cg(a)).

Thus, we are in the situation of 11.2.3.

11.2.4  Let 0 be locally complete but not complete on G, q € w(0), and

G = KQ with K € y(A,q) and Q € lly(A,q).

(a) @ does not normalize any nontrivial ¢'-subgroup of G.
(b) FU)<Q forall Q@ <UE€ly(A).
(¢) Let Q be Abelian. Then U < Ng(Q) for all Q <U € llp(A).

Proof. Note that @ € Syl, G and Syl, K C Syl, G for r € 7(K). Moreover,
G = K@ shows that

(1) Syl,G= | Syl, KY for r € n(G) \ {q}.
9e@

Since 6 is locally complete but not complete, no nontrivial normal subgroup
of G is in y(A). In particular

2 NKI= (K =1
geG geQ

Let X be a ¢-subgroup that is normalized by Q. According to (cp) for
every r € m(X) there exists a Q-invariant Sylow r-subgroup of X. Thus to
prove (a) we may assume that X itself is an r-group. Then (1) implies that
X < K, so by (2)
X< (K =1
9eq
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Claim (b) is a direct consequence of (a) since @Q € Syl G.
For the proof of (c) recall from 6.1.4 on page 123 that

F) € Q < CuF)) < FO)

since @ is Abelian, so Q = F(U). O

11.2.5 Let 6 be locally complete on G, q € w(0), and Q € Wy(A,q).
Suppose that Q is Abelian, r(A) > 3, and

G = KQ for K :=0y(G).
Then 0 is complete and 0(G) = G.

Proof. Note that the remark after 11.2.3 shows that G is a p’-group such
that

Cy, = Cg(a) and Cp=Cg(B) for ac A¥, 1# B < A.
In particular, 11.2.3 applies to G. Hence, ly(A) is the set of A-invariant
solvable subgroups of G, and 6 is complete if and only if G is solvable.

Thus, we may assume that G is not solvable. Moreover, as 6 is locally com-
plete, also the normalizers of A-invariant solvable subgroups are solvable,
ie.,

(1) U € Wg(A) = Ng(U) € Vy(A).
The {p®q®}-Theorem of Burnside (10.2.1) shows that |7(G)| > 3, so | (K)|
> 2. Hence, as K is solvable, there exist 7,79 € (K ) such that
1 # 0,(K) < Op(K).
We fix the following notation:
Qui=QNCy acA Qs =QnCp 14£B < A
L := Ng(Q), and Ky := O, (K).

Suppose that @ < 6,/(G). Then 11.2.4 (c) yields 6,(G) < L. In particular
1 # O, (K) < L. The factorization of G gives

O.(K)< N LY= (LY = D.
geK geG

Hence, D is a nontrivial normal subgroup of G in llg(A). But then G is
solvable by (1), a contradiction. We have shown:
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(2) Q£6.(G).
Let @Q* be a nontrivial A-invariant subgroup of ). Then
Na(QT) € Vg(A)

by (1), and @ < Ng(Q*) since @ is Abelian. Hence 11.2.4 (c¢) implies:
(3) Ng(QF) < L and in particular Ng(Q*) is g-closed.

Now let U be an A-invariant subgroup of G such that UNQ # 1. Then (3)
shows that Ny(QNU) <L and UNQ €Syl, U. Thus:

(4) Let U be an A-invariant subgroup such that U N # 1. Then U N
Q €Syl U.

Let B be a nontrivial subgroup of A. By 11.1.9 @p € Syl, Cp since Cs <
Cp. Hence

Cp = Oq’(CB)NCB (@B)

since Cp is solvable and @p is Abelian. Now (3) implies:
(5) CB:Oq/<CB)(CBﬂL) forall 1 # B < A.

Set
B:={B<A||A/B|=pand Qp # 1}.

In the following let B € B. Next we show:
(6) Let T €Syl, Oy(Cy4). Then T £ L.

Assume that T < L. According to 8.2.6 on page 186 there exists an A-
invariant Hall r’-subgroup H of Cp containing (Qg. Moreover, the A-
invariant Hall 7'-subgroups of Cp are conjugate under Cs, so H N Oy (Cy)
is a Hall r’-subgroup of Oy (C4) and

0,4(C) = T(H 1 Oy (Ca)).
Together with (5) this gives

Ca = (H N Oy(Ca))(Can L)
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Since C'4 N L normalizes Qp we get
X = (@) < (@B") < H.

In particular X is an AC4-invariant r’-subgroup of Cpg, so
Qp < 0.(G) forall BeB.

But now 8.3.4 on page 193 shows that @ < 6,/(G) since A is noncyclic.
This contradicts (2), and this contradiction proves (6).

(7) Let B € Band V be an A-invariant Sylow r-subgroup of Oy (Cp).
Then [V,Qp] # 1.

Assume that [V,Qp] = 1. Then (3) implies V' < CgNL. On the other hand,
again by 8.2.6 on page 186, V N (4 is an A-invariant Sylow r-subgroup of
Oy (C4). This contradicts (6).

We now set
Kp = ﬂ K*.
z€QRB

As Oy (CB)Oy(C,) < K and Qp < C, for a € B* we obtain:

(8) Oy(Cp)Oy(Cy) < Kp for a € BF.

Next we show:

(9) Op(K) < Kp.

Let V be an AQ p-invariant Sylow r-subgroup of O, (Cp) and set
W= [V.Qp] and X = Op(K).

By (8) W normalizes X, so 8.2.7 and 8.3.4 give:

(+) X =CxW)X, W], Cx(W) = (Cx(W) N Cal a € BF),

and

(++) (X, W] = ([Cx(a),W]| a € BF).

Let a € B7. By (5) and (8)

W < Oq/(Ca) < Kp.
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Thus also
[CCL;W] < Oq’<Ca) < K37

and (++) implies that
X, W] < Kg.

Hence, by (4) and (8) it suffices to prove
C)((W) nc, < Oq/(Ca).
Let
S = Cae(W) N C,.

Then S and SQ g are AQ) p-invariant, so by (4) SNQ, €Syl, S. If SNQ, # 1,
then (3) yields W < L and thus [W,Qp] = 1. But this contradicts (7).
Hence S is a ¢/-group, and

c (5) (8)
5,Q5] ‘% [5,05,Q5) < 0y(Ca) < Ks.

But then (SNX)[S,@p| is a @p-invariant subgroup of K and thus in Kp.
It follows that SNX = Cx(W)NC, < Kp, and (9) is proved.

Recall that 1 # Ko = O,,(K) < O,/(K). Hence by (9)
Ky < Kp and thus Ky < O,,(Kp).
It follows that (K(9B) is an AQp-invariant rg-subgroup of G.

Among all AQp-invariant rg-subgroups of G that contain Ky and are
generated by conjugates of Ky we choose R maximal. Then R is an A-
invariant solvable subgroup, so by (1)

M = Ng(R) € |/|9(A)

Set Qo == MNQ. By (4) Qo €Syl M since 1 # Qp < M. Forevery g € G
there exist © € K, y € @Q such that g = zy. Hence

<K09Qo> — <K0yQo> - <K0Qo>y’
as Ko < K and @ is Abelian. In particular,
(K99°) is an ro-group for every g € G.

Let g € G such that K; := Kg < M. Then the lemma of Matsuyama
(6.7.8 on page 160), with (M, K1,Qo) in place of (G,Z,Y), gives a Sylow
ro-subgroup 17 of M such that K{ <77 and

Rl = WClM(Kl,Tl)
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is normalized by Q9. Now 6.4.4 on page 134 shows that
Ry < N := Oq/(M).

We have shown that wclg (Ko, M) < N. The coprime action of AQp on N
gives an A-invariant Sylow rg-subgroup T of M such that

R<TNN and (TN N)?3 =T nN N.
The maximal choice of R implies
R = wclg(Ko,T N N) = wclg(Ko, T).

It follows that Ng(T') < Ng(R) = M, and T €Syl,, G. We have shown:

(10)  For every B € B there exists an A-invariant T € Syl,, G such that
Ko <T and wclg(Ky,T) is invariant under AQp.

We now derive a final contradiction: Let B and T be as in (10). Moreover,
as above,

R = wclg(Ko,T), M := Ng(R), and Qo := QN M € Syl, M.

Then 1# R < O,,(M) and thus Q £ M by 11.2.4. Since

Q= ]I @B
BieB
there exists B; € B with
Q1 := QB £ M.

We now apply (10) with Bj in place of B. Then there exists an A-invariant
Sylow rg-subgroup 77 of G such that

Rl = WClg(Ko, Tl)

is AQi-invariant. According to the coprime action of A on G and on M,
there exists ¢ € C4 such that T =T so R = R and (1 < M, and
there exists ¢ € C4 N M such that

QT < Qo.
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It follows that
1 < Cqy(B1) < @1
and Q)1 = Q‘jcl < M. This contradicts the choice of By € B. O

Next we prove a version of 3.2.9 on page 67 that suits the situation of this
section.

11.2.6  Let 6 be locally complete on G and q € ©(0), and let L, M €
No(A), W e lg(A,q), and U :=60(Ng(W)). Suppose that W < M,

M = Oy(M)(LN M), and U = Oy (U)(U N M).
Then there exists c; € Co N M such that

U = Oy(U) (U N L).

Proof. The factorization M = Oy (M)(LNM) and (cp) imply that LN M
contains an A-invariant Sylow g-subgroup of M. Hence, there exists ¢; €
C4 N M such that

W (LnNnM® =L"NM and M = Oy(M)(L* N M).
With
(M,q,0p(M),L* N M,W) in place of (G,p, N, H, P),
then 3.2.9 on page 67 shows that
UNM=UnNOyM))(Un (L* N M))

and thus
U=0ygU)UNOy(M))(UnN (L* N M)).

Since the third factor normalizes the second one, this second factor is con-
tained in Oy (U); and the claim follows. O

11.2.7  Let 0 be locally complete on G, r(A) > 3 and q € w(0). Suppose
that there exists M € Wg(A) satisfying:

(%)  For every W € Wg(A,q), W # 1, there exists ¢ € Cy such that
O(Nag(W)) = Oy (0(Ng(W))) (Na(W) N M®).

Then 0 is complete on G.
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Proof. Let Qo be an A-invariant Sylow g-subgroup of Oy,(M). Since ¢ €
7(0) there exists 1 # W € lly(A, q). Hence, (x) implies that ¢ € w(M), and
Qo # 1 since M is solvable.

We fix the following notation:
Q = Z(Qov), L :=0(Ng(Q)), and K := 0y(G).
The Frattini argument and 8.2.11 imply

(1) M:ﬁOq/(M)(MﬂL) and MNC, = (Oy(M)NCy)(MNLNC,) for
a € A

We show:
(2)  Co=0y(Cy)(CaN L) for a € AL

Let W, be an A-invariant Sylow g-subgroup of Ogy,(Cy). If W, =1, then
(2) holds. Thus, we may assume that W, # 1. Set U := 0(Ng(W,)). Then

Coa = Oy(Co)([U N Cy)

and by (%)
U= Oy U)(U N M) for some c € Cy.

In particular W, < O4(U) < M*¢. We now apply 11.2.6 to

me 2 o, (Me)(Men L°).

Then there exists ¢; € C4 N M€ such that
U= 0yWU)U N L).

Hence
Co =O0g(Ca)U N Co) *E" 04(Co) 0y (U) N C)(U N L N C,)
= Oy (Co)(Cy N L),
This implies (2) since cc; € Cy.

As in 11.2.5 let
B = {B<A||A/B|=pand Qs # 1}
and pick B € B. We set
Qp = Co(B) and Kp := (Oy(C,)| a € BY).
Note that Kp < K and Kp is ACj-invariant. Hence (2) implies
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3) Co,=(CyoNKp)C,NL)and C, N K =(Cy, N Kp)(KNLNC,)
for all a € BY.

As Ck(a) = KNC, and Kp is Ck(A)-invariant, we get from 11.2.1
(4) K=Kp(KNL) for BeB.

Since ()p normalizes Kp this gives
QpK = QpKp(L N K) = KpQp(L N K)
C KpQ(L N K) = Kp(L n K)Q 2 KQ,

and

QK = ]] @K C KQ.

BeB
It follows that
Go = KQ = QK

is an A-invariant p’-subgroup of G. Thus 11.2.5 applied to Gy yields:
(5)  Og, is complete and 0(Gp) = Go.

Let G1 := [Q,Go]|Q, so G1 = [Q, K]Q since @ is Abelian. For B € B we

get

(4) 1.5.4

K, Q] = QK] = [Q,(Kn L)Kp] < [Q K5p]Q

since [Q, K N L] < Q. Thus:

(6) G1=1[Q,Kp]Q for all B € B.

Note that Cp(B) normalizes Kp and thus by (6) also G;. Since L =
(Cr(B)| B € B) we get that L < Ng(G1). On the other hand, G; is an
A-invariant normal subgroup of Gy € ly(A); so

G1 € Wg(A) and (K,L) < Ng(Gr).
The local completeness of 6 gives
(K, L) € 6(Na(Gh)),
and with (2) we conclude that
E = (Cylac A < (K,L) € Uy(A).

Hence 6 is complete. O
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11.2.8  Suppose that 6 is locally complete on G, r(A) > 3 and w(6) #
{2,3}. Then 0 is complete on G.

Proof. For |m(8)| <1 the claim follows from 11.1.10. Hence, we may assume
that there exists ¢ € m(6) such that

g > 5 and Uy(A,q) # {1}.

Let S € Wp(A,q) and @Q := W (S), where W(S) is the nontrivial character-
istic subgroup of S defined in Section 9.4. We set

M = 0(Na(W(5))).
Then the completeness of 6 follows from 11.2.7 if we can show:
(%) For every W € ly(A,q), W # 1, there exists ¢ € C4 such that

O(Na(W)) = Og (0(Na(W)))(Na(W) N M°).

For the proof of (x) let W € (A, q) be a counterexample,
U := 0(Ng(W)), and T € Syl,U with T4 =T.

In addition, we choose the counterexample W such that |T'| is maximal.
Then T'# 1 and T € (A, q). Hence

L := 0(Na(W(T)))

exists since 6 is locally complete. Pick S* € lly(A4,q) such that T < S*.
From 9.4.6 on page 255 we get

(1) U=0,U)UNL).

Assume first that T = S*. According to the Transitivity Theorem there
exists ¢ € Cy with S¢=T. Hence M¢ = L (see 9.4.1), and (1) shows that
W is not a counterexample.

Assume now that T < S*. Then

T < Ns«(W(T)) < M.
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The maximal choice of T gives property (%) for W (T') in place of W, so
L = Oy(L)(L N M¢) for some c € Cy.
Hence 11.2.6 (with (L, M¢) in place of (M, L)) implies that
U= O0ygU)LNML, ce€Cq,

and W is not a counterexample. This final contradiction proves (x). a

An important special case of the Completeness Theorem, the theorem of
Goldschmidt [55], is now a consequence of 11.2.8.

11.2.9 Let p = 2 and 0 be a solvable A-signalizer functor on G with
r(A) > 3. Then 6 is complete on G.

Proof. Let (G, A,0) be a counterexample such that |G|+ |7(#)| is minimal.

Assume that N is a nontrivial normal subgroup of G contained in Vg(A).
Then 6, defined as in 11.1.3, is a solvable A-signalizer functor on G := G/N,
and the minimality of |G|+ |m(6)| shows that 6 is complete. But now by
11.1.4 also 0 is complete, a contradiction.

Hence, no nontrivial normal subgroup of G is contained in Vg(A). In par-
ticular Ng(U) < G for 1 # U € lg(A). Now again by the minimality of
|G| + |7(0)| 0 is locally complete on G. Thus 11.2.8 shows that 6 also is
complete, a contradiction. O

11.3 The Completeness Theorem of Glauberman

As before A is an noncyclic elementary Abelian p-group that acts on the
group GG. The notation is chosen as in Sections 11.1 and 11.2.

We will need the following remark:

11.3.1  Let G be a solvable p'-group and q € ©(G). Suppose that U is
a ¢ -subgroup of G such that [U,Cq(B)] is a ¢ -group for every maximal
subgroup B of A. Then U < Oy(G).
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Proof. We may assume that Oy (G) = 1 and show that U = 1. Let
Q := Oy4(G). Then

Q2 (Co(B)| B < A, |A/B| = p),

so [Q,U] =1 since [U,Cq(B)] < Q. It follows that

6.4.3
U<Cq(Q) < Q

and thus U = 1. O

11.3.2 Completeness Theorem of Glauberman. Let 6 be a solvable
A-signalizer functor on G. Suppose that r(A) > 3. Then 6 is complete.

Proof. We proceed by induction on |G|+ |7(0)|. Let (G, A,0) be a coun-
terexample such that |G|+ |7(f)| is minimal. As in the proof of 11.2.9:

(1) 0 is locally complete.

Thus 11.2.8 implies:

(2) =(0)={2,3}.
In the following let ¢ and r be the two primes in 7(f), so

m(0) = {q,r} = {2,3}.

W= WNg(A), U = Wy(A), Ns := Wg(A,s), W = Wy(A,s) (semn(h)).
The Transitivity Theorem 11.1.8 yields
i =S4 and U = R for Selff and Rel,

which we will use frequently.

First we prove:

(3) Let Selly. Then S is contained in a unique element of U".
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Proof. Clearly S # 1 since ¢q € w(6). Let
S < My N My for Mi,Mse N*.

We show that M; = Ms,. For ¢ = 1,2 there exists an A-invariant Sylow
r-subgroup R; of M,; such that M; = SR;. Let R; < éz e 17 and
c € Cy with R = Eg. From 11.1.9 we get that C'4 N ]/%1 €Syl C4 and
CanS eSyl,Cy, so Cy = (ﬁz NC4)(SNCy). Hence, we can choose ¢ in
SNCy. It follows that

R1°S = (R1S)° = (SR1)° = SR,

Thus
M* = S(R:° Rs)

is an A-invariant subgroup and (R;¢, Ry) < }/%2, in particular (R;¢, Ry) € .
The p®q°-Theorem shows that M* is solvable. Hence 11.1.2 yields M* € IA.
Since

ce S <M< M*

the maximality of M; and M, implies that
My, = M* = M = M. O
(4) Let S € U and S < M € I". Then S contains an A-invariant
subgroup @ # 1 such that the following hold:

(4da)  O(Ng(Q)) is not Thompson factorizable (with respect to q).
(4b)  O(Ng(Q)) NCy £ M, and in particular C4 £ M.

Proof. Note first that 11.2.7 and S%4 = |/|Z show that S contains an A-
invariant subgroup @ # 1 such that

U = 6(Na(Q) # 0, (U)(U N M).

In addition, we choose @ such that |U N M|, is maximal. Let T be an
A-invariant Sylow ¢-subgroup of U N M. After conjugation in M we may
assume that T'< S. By (3) T'< S and thus

T < Ns(T) < Na(J(T)).
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The choice of () implies
Uy = 0(Ng(J(T))) = Oy (Ur)(Ur N M).

On the other hand @ < T and thus Q(Z(5)) < Q(Z(T)) < J(T), so again
by (3)

Og (U1) < 0(Ca(U(Z(T)))) < 0(Ca((Z(5)))) < M.
Hence U; < M follows. We have shown:
(%) E = (0(Ca(Q(Z(T)))),0(Na(J(T)))) < M.
In particular (Ng(T)) < M and thus
T € Syl U.
If U is Thompson factorizable, then
U = Og(U) Ny(J(T)) Cu(Q(Z(T))) = Og (U)(U N M),

which contradicts the choice of U. Hence U has property (4a). Now 9.3.10
(a) on page 247 and (cp) give

(*)

U = O (UNE N U,Cu(A)) 2 04 (UM N U,Cy(A)).

It follows that Cy(A) = CaNU £ M, and this is (4b). O
(5)  There exist elementary Abelian subgroups of order 9 and 8 in C4.

Proof. Let U :=0(Ng(Q)) be as in (4). We apply 9.3.10 (b) to U/O4(U).
Because of (cp) there exist subgroups W < D < Cj4 such that

W = Cq X Cq and D/CD(W) = SLQ((]).

Let ¢ = 3. Then W has the desired property. Moreover, there exists an
element of order 6 in C4/O42/(C4) since D/Cp(W') = SLa(3) contains such
an element (see 8.6.10 on page 219 and note that O (SL2(3)) = 1).

Now let ¢ = 2 and C4 := C4/O9(C4). Then every 3-element d € D \
Cp(W) acts fixed-point-freely on W. Hence, C 4 satisfies the hypothesis of
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8.5.6 on page 209, and C'4 also contains an elementary Abelian subgroup
of order 8. O

In the following B denotes the set of all maximal subgroups of A,° and B
always denotes an element of B. For ¢ € w(0) we set

K :=0,(G),
Ky(B) := (Oy(C,)| a € B¥), B € B,

Kn(B):= () Oy(Ca), BEB,
acB#

Kg:= (KA(B)| B € B).

All four subgroups are C'g-invariant, so they are in K. In addition
KA(B1) < 0y(C,) < Ky(B) forall BB € B and a € (B N By)*.

In particular
KA(B) < Ky < Ky(B) forall BeB.

(6) (6a) KpnNH<Og(H) forall H <.

(6b) If H € I such that H N Cy < Oy (Cy,) for all a € A%, then
H < Kg.

(6c) If F < Cy is a noncyclic Abelian q-subgroup, then
Kg = (O (8(Ca(f)| f € FF).

In particular 6(Cg(F)) < Ng(Kp).

Proof. (a) Note that K\ (B)NH is an H NCp-invariant ¢’-subgroup of H.
Since KgNH < Ky (B)NH we get that [KgNH, HNCp] is a ¢'-subgroup
for every B € B. Hence (a) follows from 11.3.1.

(b) We have

HnNCp=Cr(B)= (1 (HNC,) < K\(B),

SO H:<HQCB|BEB>§KB.

5This is different from the notation of the the previous section.
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(c) Let f € F* Then (f) is A-invariant and thus (f) € I. Set C; :=
0(Ca(f)). Since Kp is a Cy-invariant ¢’-subgroup

(a)
Kp = (K NCy| f € F¥) < (04(Cy)| f € FF).
Conversely, for a € A? 8.2.12 gives
Ca N Oq’(cf) < Oq’(CCa(f)) < Oq’(Ca)a

and this implies (c). O
(7) Kg=1 forall q€n(0).

Proof. Assume that Kp # 1 and set

N = 6(Ng(KB)).
Then C4 < N, and (3) and (4b) imply
") S £ N forall S el

By (5) there exists £ < C4 (< N) such that

Cq x Oy for ¢ =3
FE =
Cy x Cy x Cf for g =2

Let @ be an A-invariant Sylow g-subgroup of N with £ < @ < N.

First we show that the statement
@) Every Q-invariant ¢’-subgroup of V|, is contained in in Kjp.

does not hold.

For doing this let Q1 be an A-invariant Sylow g¢-subgroup of 6(Ng(Q)).
Then Ko := (K g 1NCBY jg Q-invariant. On the other hand,

Kp < Ky(B) < K and Q1 N Cp < Cp < 0(Ng(Ky(B)));

so Ky is a Q-invariant ¢'-subgroup in .
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Assume now that (”) holds. Then Ky = Kp and thus @1 NCp < N. It
follows that
Q= (1 NCp|BeB) <N,

and @ = Q1 since Q < Q1. This shows that @ € U7, which contradicts (").

To derive a contradiction it suffices now to verify (7). Let U # 1 be a
Q-invariant subgroup in . First assume that ¢ =2, so |E| = 8. Then

c (6¢)
U@ (Cu(F)|F<E, |[F|=4) < N,

and thus even U < Oy (N) since @ € Syly N (see 6.4.4 on page 134).
Let F < E with |F| =4. Then

Cu(F) < Og(N) N 8(Na(F)) < Op (9(Ca(F))),
and 8.2.12 implies for all f € F*

Cu(F) < Op(B(CalF))) < Oy (B(Ca(f)) 'S Ks.

It follows that
U= (Cy(F)|F<E, |F|=4) < Kg,
and (") holds if ¢ = 2.

Assume now that ¢ = 3, so |E| =9 and E < Cy < C, for every a € A%
Let Sy be an A-invariant Sylow g-subgroup of C¢, (F). Then E < Z(Sp)
and thus

(2) Z(So) € Syl, Cc, (So).

Moreover, (6¢) implies that Sy < N. Hence, there exists d € C4 such that
Sy < Q¢ and thus

So < CanN Q= (Cu N Q)"
The ¢'-group T := (U NC,)¢ < C, is normalized by the g-group Sp. Let
Cy = Co/Oy(Cy) and X := 04(C,).
The semidirect product SyT acts on the g-group X, and
)

c (2) — _— —  —
C(So) 2 Cx(80) < Z(So) N X and [Z(So)NX,T) < X NT = 1.
Now 8.5.3 on page 205 shows that [X,T] = 1. It follows that T' < O, (C,)
and thus UNC, < 0y (C,) since d € Cy. Now (6b) (with H = U) implies
(//). O
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(8) Let M € I" with Ca < M. Then F(M) = Oy(M) for some q €
7(0).

Proof. Let M be a counterexample, so O2(M) # 1 # O3(M) by (2).
Moreover, let E < C4 be an elementary Abelian g-subgroup as in (5),
so r(E) > 2. Then Cp ) (E) # 1, and there exists e € E# such that
Oy (M)N6O(Cq(e)) # 1. It follows that

Co,my(e) # 1 # Co,any(e).

Hence, by 11.2.2 M is the unique subgroup in //* that contains Cp(s)(e).
In particular 6(Cg(e)) < M. This shows that

Oy (M) N 0(Ca(e)) < 0, (0(Cale))) < Ks 21,

a contradiction. O

We now derive a final contradiction that shows that (G, A, ) is not a coun-
terexample. Let S € II5. There exists B € B such that

g = Z(S) N Cg 75 1.

On the other hand, by (7) Kz =1 for ¢ = 3. Hence, there exists b € B#
with
Zp £ Oz(Chy) = O2(Cy).

Let M € I* such that C, < M. Then also C4 < M, and 11.1.9 implies
that SN M € Syls M. In particular

OQ(M) S S and [OQ(M),ZB] = 1.

But Zp £ Os(M) since Ox(M) N Cy < O2(Ch), so (8) and 6.4.4 on page
134 give
F(M) = O3(M) and [Os3(M),Zg] # 1.

Since O3(M) = (Cz N O3(M) | B € B) there exists B € B such that
O5(M) N Cjy £ CalZp),
Hence

(+) [C5, ZB] is not a 2-group.
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With the same argument for T € 5 there exist subgroups D, D € B such
that Z(T)NCp # 1 and

(++) [Cx, Z(T) N Cp] is not a 3-group.

We now use the fact that r(A4) > 3. Then BN D # 1, so there exists
1#£we BND. Let
Cp < H € .

According to (8) either F(H) = Oy(H) or F(H) = O3(H), and 11.1.9 (a)
shows that
SNHeSyl,H and TN H € Syl H.

Assume that F(H) = Oz(H). Then Oy(H) < S, and thus

Zp < Cy(O2(H)) < 0O2(H).

Hence [Cg, Zp]| is a 2-group since Cz < H. This contradicts (+).

If F(H) = O3(H), then an analogous argument with 7" in place of S shows
that [Cz, Z(T) N Cp] is not a 3-group. This contradicts (++). O

We will use the Completeness Theorem in the next chapter. Here we give
an elementary consequence:

11.3.3  Let A be an elementary Abelian p-group with r(A) > 3 that acts
on the p'-group G. Suppose that

Ce(a) is solvable for all a € A7,

Then G is solvable.

Proof. Define
0(Cg(a)) == Cgla), ac AT,

By 11.1.1 0 is a solvable A-signalizer functor on G, and this signalizer
functor is complete by the above Completeness Theorem of Glauberman.
Now 8.3.4 on page 193 implies that G is the maximal element of Vg(A). In
particular, GG is solvable. O
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Chapter 12

N-Groups

In this chapter we will demonstrate how to use the methods and results es-
tablished in the previous chapters. Our target is to investigate the structure
of N-groups. Here an N-group is a group G that satisfies:

N G has even order, and every 2-local subgroup of G is solvable.

This definition differs slightly from that used in the literature, where an
N-group G satisfies N not only for 2 but for every prime in p € 7(G); i.e.,
every local subgroup of G is solvable. All nonsolvable groups satisfying this
stronger condition have been classified by Thompson [94]. Later his result
was generalized by Gorenstein and Lyons [61], Janko [73], and F. Smith [83]
to groups that satisfy N. In the 1970s Thompson’s proof became a pattern
for the classification of the finite simple groups.

A complete treatment of N-groups would be far beyond the reach of this
book. Therefore, in this chapter we will assume the following additional
hypothesis:

z Ca(QZ(8))) < Na(S) for S € Syl,G.

A group satisfying Z and N is said to be a ZN-group.

Property Z implies that Cq(Q(Z(S))) and thus also Ng(Q(Z(9))) is 2-
closed. Hence, Z is equivalent to

Na(QUZ(9))) < Ng(S) for S e Syl,G.

For example, simple N-groups in which the normalizer of a Sylow 2-subgroup
is a maximal subgroup have this property.

335
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The investigation of ZN-groups shows the pattern of proof that is typical
for many classification problems:

e Reduction to groups of local characteristic 2.
e Determination of the 2-local structure.

e Identification of the groups by means of their 2-local structure.

We will carry out the first two steps for ZN-groups. For the identification
we will refer to the corresponding literature.

In this chapter a strongly 2-embedded subgroup of G (for the definition see
page 262) will be called strongly embedded in G.

A group G has local characteristic 2 if G has even order and
L Cp(Oy(L)) < Oo(L) for all 2-local subgroups L of G.

In other words, a group of even order has local characteristic 2 if ev-
ery 2-local subgroup has characteristic 2. Note further that the condition
Cr(O2(L)) < O2(L) implies the apparently stronger condition

Ca(0s(L)) < Oo(L)
since L = Ng(Q) for some nontrivial 2-subgroup @ < Oz(L) and

Ca(02(L)) < Ca(Q)) < L.

If G is an N-group of even order, then by 6.4.4 (a) on page 134 L is
equivalent to:

Oy (L) = 1 for all 2-local subgroups L of G.

In this chapter we prove:

Theorem 1. Let G be an ZN-group with Oy (G) = 1 = O2(G), and let
S €Syl G and Z = Q(Z(S)). Then one of the following holds for

H := O*(G) and R := SN H.

(a) H contains a strongly embedded subgroup.
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(b) R is a dihedral or semidihedral group.
(¢) ZNR=Cy and ZN R is weakly closed in R with respect to H.

In all four cases of Theorem 1 other theorems are available that allow to
determine the groups in question:

e The theorem of Bender about groups having a strongly embedded
subgroup.

e The theorem of Gorenstein-Walter about groups having dihedral Sy-
low 2-subgroups.

e The theorem of Alperin-Brauer-Gorenstein about groups having semi-
dihedral Sylow 2-subgroups,

e The Z*-Theorem of Glauberman (in case (c)).

e The theorem of Goldschmidt about groups having a strongly closed
Abelian 2-subgroup (in case (d)).

We will state these results in the Appendix since they are not only of use
in our special situation but fundamental for the classification of the finite
simple groups in general.

The first step in the proof of Theorem 1 (Section 12.1) describes those groups
that are not of local characteristic 2. This can be done using a slightly weaker
hypothesis:

C G has even order, and Cg(t) is solvable for every involution ¢ € G.

A group satisfying Z and C is said to be a ZC-group. Using the Complete-
ness Theorem of Glauberman we prove in Section 12.1:

Theorem 2. Let G be a ZC-group with O (G) =1 = O2(G). Then one of
the cases (a), (c), and (d) in Theorem 1 holds, or O*(G)Q(Z(S)) has local

characteristic 2.

The second part of the proof of Theorem 1 (Sections 12.2 and 12.3) investi-
gates the 2-local structure of groups of local characteristic 2. After a lengthy
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analysis of the 2-local structure that mainly uses theorems from Chapters 9
and 10, one ends up with an astonishingly elementary structure:

Theorem 3. Let G be an ZN -group of local characteristic 2 with O2(G) =
1. Then G possesses a strongly embedded subgroup, or there exist two maz-
imal 2-local subgroups My and My of O*(G) such that

(%) My = S, = My, and My N My € Syly, M;, i = 1,2.

It should be pointed out that strongly embedded subgroups show up in The-
orem 2 as well as in Theorem 3. This is typical for the impact of strongly
embedded subgroups in classification problems, and it demonstrates the fun-
damental importance of the theorem of Bender. In Theorem 2 strongly em-
bedded subgroups occur as normalizers of nontrivial subgroups of odd order,
in Theorem 3 as normalizers of nontrivial 2-subgroups.

Finally an elementary argument shows that () of Theorem 3 implies case
(b) of Theorem 1, which concludes the proof of Theorem 1.

12.1 An Application of the Completeness
Theorem

In this section we investigate the relation between the existence of nontrivial
signalizer functors and the existence of strongly embedded subgroups.

Before we turn to the proof of Theorem 2 we formulate two independent
Lemmata.

12.1.1 Thompson’s Transfer Lemma. Let G be a group and S €
Sylo G. Suppose that there exists a maximal subgroup U < S and an invo-
lution t € S such that tNU = @. Then t is not contained in O*(G).

Proof. The group G acts by right multiplication on the set € of cosets Uy,
g € G. Let n:=|Q| =|G :U| and ¢ be the homomorphism from G to S,
that describes this action of G on ). Then

n = 2|G:S| and |G:S| is odd.

For Ug € Q
(Ugit = Ug < gtg~ ! € U.
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The hypothesis U NtY = @ shows that the involution t¥ € S, has no
fixed point on {1,...,n}, so t¥ is the product of % transpositions. As

& = |G : S| is odd, t¥ is not in A, and thus ¢ is not in N := A2 In
addition, |Sn/An‘ =2 1mphes ’G/N’ = 2’ SO OQ(G) S N and t g OQ(G)
O

12.1.2  Let G be a group satisfying C. Suppose that O (Cg(t)) =1 for
every involution t € G. Then G is of local characteristic 2.

Proof. By way of contradiction we may assume that there exists a 2-local
subgroup L < G such that

Cr(02(L)) £ O2(L).
Then 6.5.8 on page 144 implies that
F*(L) # Oz(L).

Let t be an involution in Z(O2(L)), so F*(L) < Cg(t). By our hypothesis
Cq(t) is solvable. Thus F*(L) = F(L) and

Ox(L) # 1.
An application of 8.2.13 on page 190, with
(2,L,Cq(t),0(L)) in place of (p, Ng(P),L,U),

gives 1 # Oy (L) < O (Cg(t)), a contradiction. O

We now begin with the proof of Theorem 2 and consider the following situ-
ation:

G is a ZC-group with O2(G) =1 = 0(G),
S H:=0%G),

S eSylbG, Z:=Q(Z(5)) andT :=SNH eSyla H.
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Let B(G) be the set of maximal! Abelian 2-subgroups of G' that contain

an elementary Abelian subgroup of order 8. Recall from 11.1.1 on page 305
that for B € B

0p: a— Oy(Cq(a)), a€QB),

is a solvable Q(B)-signalizer functor on G. The Completeness Theorem of
Glauberman (11.3.2 on page 326) shows that 5 is complete. We denote the
maximal element of llp,(Q2(B)) by 0p(G). It is evident from the definition
of a signalizer functor that for R :=0p(G):

Cr(a) = Ox(Cg(a)) for a € BY;
Cr(Bo) = Oy (Cg(Byo)) for 1# By < B;
R = (0y(Cg(a))| a € BY);

RY9 = 0py(G) for every g € G, and in particular Ng(B) < Ng(R).

12.1.3  Suppose that S holds. Let B € B(G) and R be a B-invariant
2'-subgroup of G. Then
R < 0p(G).

Proof. From 11.3.3 on page 333 we get that R is solvable. Hence, according
to the definition of 0p(G), it suffices to show that

Cr(b) < Oy (Cgq(b)) for every b € BF.

Let b € Bf and X := Cg(b). After suitable conjugation we may assume
that

(1) B < Cg(b) N S € Syly Ca(b).
Since B € B(G) we have

(2) Z < Cs(B) = B.

This shows that RZ = R; so

(3) X = CX(Z) [X’Z]v

"'With respect to inclusion.
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and

X, 7) "' R0 0ga(Calb)) < On(Calb)).

Thus, it remains to prove that @ = Cx(Z) < Og2(Cg(b)). Property Z
implies that S9 = S. This gives QB = Q x B since Q is B-invariant. Now
the P x @Q-Lemma and (2) show that

[Sv Q] = L

In particular [@,S N Cg(b)] = 1. Hence 6.4.4 (b) on page 134 yields @ <
O (Ci (b)), and we are done. O

12.1.4  Suppose that S holds. Let A,B € B(G) such that A,B <
Then 04(G) = 0p(G). In particular Ng(S) < Ng(0p(G)) for all B
B(G) with B <S.

S.
€

Proof. Let R:=0p(G) and M := Ng(R). Then
B< SN M= 25,

and thus also B < Sy < Ng(R*) for x € Ng(Sp). Now 12.1.3 gives R = R”
and x € M NS =S5y. Hence Ng(Syp) = Sp and thus S = Sy < M. In
particular A < M, and again by 12.1.3

R = 05(G) < 04(G).

A symmetric argument, with the roles of A and B reversed, gives 64(G) <
0p(G) and thus 04(G) = 0p(G).

As Ng(S) acts on B(S), we also get

HBQ(G) = GB(G)Q = QB(G) for g € Ng(S) O
12.1.5 Suppose that S holds. Then one of the following holds:

(a)  Every involution of TZ is contained in an element of B(G).

(b) Z = Oy, and all involutions of H are H-conjugates of the involution
n 4.

(C) Q(T) =/ = CQ X CQ.
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(d) ZNT=Cy, and ZNT is weakly closed in T with respect to H.

Proof. Let N(S) be the set of nontrivial elementary Abelian normal sub-
groups of S. Suppose that there exists X € N(S) such that r(X) > 3.
Then

r(Cx(t)) > 2

for every involution ¢ of S, since t acts quadratically on X (Example (b) on
page 225 and 9.1.1 (b)). Hence |Cx(t)(t)| > 8, and Cx(t)(t) is contained
in an element of B(G). This is (a). Thus we may assume:

(1) =(X)<2 forall X € N(S).

Suppose that r(X) =1 for all X € NV(S). Then 5.3.9 on page 116 shows
that S contains a cyclic maximal subgroup. Hence, also T' contains a cyclic
maximal subgroup U. Moreover Z < U if U # 1, since r(Z) = 1. Now
(b) follows with Thompson’s Transfer Lemma (12.1.1) applied to H and 7.
Thus we may assume:

(2) There exists V € N(S) such that V = Cy x Cs.

Let Sy := Cg(V). Then Sy is a subgroup of index at most 2 in S. Suppose
that V < Q(Sp). Then every involution of Sy is contained in an element of
BeB(G). If V=2 then S=5, and (a) follows. In the other case

Vi # 2, 12] = 15/5| = 2,

and Z < T since T is normal in S. Now 12.1.1 shows that every involution
in T\ Sy is conjugate to an involution in Sy. Thus, again (a) holds. Hence
we may assume:

(3) V =9Q(Sp), and in particular Z < V.
Suppose that there exists B € B(G) such that B < S. Then by (2) and (3)

B £ Sy and V < BN Sy. But now B < Cg(V) = Sy, a contradiction. We
have shown:

4) BG) =o.
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Suppose that Z 2 Cy,s0 Z=V and Sog=S5. Set Zy:=ZNT. If Z<T,
then (3) implies (c). In the other case Zy = Q(T) = Cs, and (d) holds.
Since Zp # 1 we may assume now:

(5) Z = Cyand Z < T.

In particular, we have Z < V' and thus
|S : So| = 2.

From now on we assume that (d) does not hold. Then there exists g € H
such that Z # 79 < S. Let

W =229 (=2CyxCy), M := Ng(W), and D := S5 n 5.
By Hypothesis Z
C(;(W) = Ng(S) N Ng(Sg) and Cs(W) =D.

Moreover (4) yields
(6) W =Q(D,).

Since D # S also D < Ng(W) and D < Ngg(W). Hence M/Cqg(W) is
not 2-closed. It follows that

M/CM(W)g;Sg and (SﬂM)/D%CQ

In particular, all involutions in W are conjugate under O?(M).

Suppose first that S < M. Then D is a maximal subgroup of S, and by
12.1.1 every involution of T' is conjugate in H to an involution of D N T.
But by (6) this latter involution is in W NT and thus an O?(M)-conjugate
of the involution in Z. This implies (b) since O?(M) < H.

Suppose now that S £ M. Then there exists x € Ng(S N M) such that
W* £ W. Thus [(SNM):D|=2 and (6) imply

SNM=W?*D=WD* and D = W(D n D?).

It follows that
(D) = &(D n D).
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Assume that ®(D) # 1. Then WN®(D) # 1, and WN®(D) is M-invariant
since D = O9(M). The transitive action of M on W# gives

W < &) = ®D n D*) < D",

which contradicts Q(D?) = W?* £ W.
We have shown that ®(D) =1 and thus D = W. On the other hand,

VW] < Z < W,
since |V/Z| =2 and V < S. Hence
V<SNnM=WW?~

As WW?® is non-Abelian of order 8, it is a dihedral group of order 8 with
W and W*¥ being the only two elementary Abelian subgroups of order 4. It
follows that either V =W or V = W¥*. Since x is in S both cases yield
V =W = W?¥, a contradiction. O

12.1.6  Suppose that S and one of the cases (a) and (b) in 12.1.5 hold.
Then H possesses a strongly embedded subgroup, or HZ has local charac-
teristic 2.

Proof. We may assume that HZ does not have local characteristic 2. Then
by 12.1.2 there exists an involution ¢t € HZ such that Oy (Crz(t)) # 1, so
also

Ox(Ce(1)) # 1.

Suppose first that case (b) of 12.1.5 holds. Then t is conjugate to the
involution z € Z, and Cg(z) = Ng(S) since Z holds and |Z| = 2. It
follows that

R = Ox(Na(S)) = Ox(Cal2)) # 1.

Let M := Ng(R). Then M # H since O (G) = 1. We want to show that
M is strongly embedded in H.

Assume that there exists ¢ € H \ M such that M N M9 has even order.
Then M N MY contains an involution v, and after suitable conjugation in

M we may assume that
velSns.
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Since [R,S] =1 we get
[R,v] =1 = [RY,v],

so (R,RI) < Cg(v). As R = Ox(Cg(z)) and (Z29,7Z) < Cg(v) we can
apply 8.2.13 on page 190 to Cg(v) and get

(b)

(R,RY) < O9(Ca(v)) ¥ Ox(Ng(SY)) = RY for some y € G.

Hence R = RY and g € M. This contradiction shows that M is strongly
embedded in H.

Suppose now that case (a) of 12.1.5 holds. Then there exists B € B(G)
such that t € B. As Cg(t) is solvable, we get

(1) 1 # 02(Ca(t)) < 05(G).

We now set
R := 0p(G) and M := Ng(R)

and show that M N H is strongly embedded in H.

As above O (G) =1 shows that M N H # H. According to 12.1.4 we may
assume, after suitable conjugation, that

(2) B < 8§ < Ng(S) < M.

Let g € G\ M. If there exists A € B(G) such that A < M N MY, then
again by 12.1.3 and 12.1.4 R = RY and g € M. Thus, we have:

(3) AL MNMY forall A€ B(G) and g € G\ M. In particular, M NMY
does not contain a Sylow 2-subgroup of G.

Next we show:

(4) ZLMnNMY foral ge G\ M.

Assume that (4) is false. Then there exists g € G\ M such that
Z < MnMI =:D.

By (2) S €Syla M, so

Z < S for some h € MY.
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In particular [Z,Z9"] = 1, and by Z and (2) ZZ9" < D and Z # Z9".
Since also gh € G\ M we may assume that

779 < SnNS8SI < D.
Let
W .= Z279,

so (W) > 2 since Z # Z9. If r(W) > 3, then there exists A € B(G) with
W < A. But then Z implies A < SN SY < D, which contradicts (3). Thus,
we have

WgCQXCQ and |Z|=2.
Now, as in the proof of 12.1.5, (2) yields

Ne(W)/Ca(W) = S,

In particular, all elements of W# are conjugate. Hence Z implies for a €
wt
Ca(a) = Ng(SY) for some y € G.

Since R = R and W < SY we get
[Cr(a),W] < RNSY =1 for all a € W¥.

Now 8.3.4 on page 193 shows that

R < Cr(W) £ 0y(Ca(2)) N Cal(Z9).

Another application of 8.2.13 yields

12.14
R < 09(Ca(29) < RS9

and thus R = RY and g € M, a contradiction. Hence (4) is proved.

To derive a final contradiction we now assume that M N H is not strongly
embedded in H. Then there exists g € H \ M such that H N M N MY has
even order. Note first that by the Frattini argument M = Ng(M) since
Ng(S) < M, so M # M9Y. Let

Qe Syl,HNM N MY and D := SN S

After conjugation in M we may assume that @@ < D. By (2) and (3) there
exists a 2-element y of M9\ D such that QY = @, and by 8.1.4 on page 177
there exists an involution w € Z(Q) such that w¥ = w. Hence
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(5) C:=Cq(w) L M.
There exists © € G such that
SNC < S*"ncC e Syl,C.

Since Z < SNC and S*NC < M?*, (4) implies that € M. Thus, after
conjugation in M, we may assume that

SNC e Syl,C.

As we are in case (a) of 12.1.5, there exists A € B(G) with A < SnC.
Now 12.1.3 and 12.1.4 imply O« (C) < R, so O (C)(SNC) < M. But then
6.4.4 on page 134 shows that

Z < 099(C) < C N M.
Hence, Z is in M?* for all z € C, and (4) yields C' < M. This contradicts
(5). O

The cases (c¢), (d) in 12.1.5 correspond to the cases (c), (d) of Theorem 1;
and the cases (a), (b) have been treated in 12.1.6. Hence, Theorem 2 is
proved.

12.2 J(T)-Components

In this section G is a ZN-group of local characteristic 2, and T is a non-
trivial 2-subgroup of G.

By J(X) we denote the Thompson subgroup of the group X with respect
to the prime 2. Let L£(T') be the set of subgroups L < G satisfying:

T € Syl, L, J(T) £ Oz(L), and Cg(O2(L)) < O2(L).
The last condition implies that Oo/(L) =1 and
Z(S) < Z(T) < Z(0O9(L)) for T < S € Syl,G.

In particular L is a ZN-group.
For L € L(T) we use the following notation:

V = (QZ(T)HE) (< QUZ(0o(L)))),
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C = CL(V),
L:= L/C and L := L/Oy(L).2

12.2.1 Let L be a 2-local subgroup of G and T € Syl, L.

L€ L(T) « J(T) £ Os(L).

Proof. As mentioned on page 336 L satisfies
Ca(02(L)) < Oq(L)

since (G is of local characteristic 2. O

12.2.2  Let L e L(T).

(@) C=09(C) and CT=C x T.
(b) J(T)£C.

Proof. (b) follows from (a) since J(T') £ O2(L). Let T'< S € Syl, G. As

mentioned earlier

Z:=0Z(S)) < QZ(T)) < V.

Now Z implies

C < Cq(Z)nL < Ni(S) < Np(T).

Hence C is 2-closed, and (a) follows. O

According to 12.2.2 (b) and 9.2.12 on page 238 L € L(T) is not Thompson
factorizable, so we are allowed to apply the results of Section 9.3. From
9.3.8 we get:

12.2.3 Let L € L(T). Then there exist subgroups FE1,...,E, of L such
that the following hold:

2We will use the bar and tilde convention.
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{Ey,...,E.}F ={Fy,...,E,.},

V=I[V,Ei] x---x[V,E] xCy(J(L)),

)
(b)
(c) J(L)=FE;x---xE,,

) (L

) [‘/,EZ]%JCQXCQ and E1§SL2(2) fO?“iIl,...,’I“. g
Next we introduce the notion of a J(T')-component. It can be seen as an
attempt to describe the structure of the groups F; of 12.2.3 independent
of the particular choice of L € L(T). This then allows us to investigate
the embeddings of such J(7')-components into different elements of L£(T').
The ultimate goal (in Section 12.3) will be to show that a suitably chosen
J(T)-component is contained in a unique maximal 2-local subgroup of G.

A subgroup K < G is a J(T')-component if the following hold:

K4 K =0%K) =[K,J(T)] and K/Oy(K) = Cs,
Ko J(T) = J(T) for J(T) <T €Syly(KJ(T)),
]Cg WK = 02 X 02 for WK = [Q(Z(OQ(K))),K]

The set of J(T')-components of G we denote by K(T). For L <G
Kp(T)={K e K(T)| K <L},
Ko(T) := {K € K(T) | J(T) = J(Tp) for T < Ty € Syl, No:(Wi)}.

The first observation is elementary but useful:

12.2.4 Let K € K(T) and Q be a subgroup of G satisfying
KJ(T) < Ng(Q) and Q < Ng(J(T)).
Then @ < Ng(K).

Proof. By our hypothesis
(D)%) = (J(D)F) B KJ(D),
so @ normalizes K.J(T) and thus, again by K1, also O*(KJ(T)) = K. O
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12.2.5 Let L € L(T) and Q := { Ey,...,E.} be the set of subnormal
subgroups of L given in 12.2.3. Then there exists a bijection

p:Kp(T) = Q such that K = O*([0*(K?),J(T)])
for K € Kr(T). Moreover

K < L and Wg = [V,K"].

Proof. Let K € Kr(T). By 12.2.2 (a) C' normalizes T and thus also J(T).
Hence 12.2.4 (with @ := C) gives

(1) K < KC.
In particular K < KOs(L) and
K 12.2.2
K = [K,J(T)] < [KC,J(T)] < K[C,J(T)] < KOyL).

Now /i implies

(2) K = O*([KC, J(T)]).
Again by Ky
(3) K < O*E,) x --- x O*(E,),

so O2(K) =1 and

Ox(K) < C 1 Os(K) £ 04(C) < (L),

Now K1 and 12.2.2 (a) give
(4) K ~(C53 and [V,K]| = [V,K,K] = Wk = Cs x Cs.

Hence, by 12.2.3 there exists exactly one i € {1,...,r} such that the pro-
jection of K on FE; is nontrivial, so

(5) KC = O*(E;)C.
This shows that there exists a mapping

p: Kr(T) — Q such that K = O*(K?).
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Moreover, for E; = K” we have

D oxire, ) L oxoAE)C,ITY) 2
J(

[O%(E:), J(T)]O2(L).
As K = O%*(K), this shows that K = O?([0?(E;), J(T)]) = O*(K*,J(T))).

By (1) and (5) K is subnormal in L, and by (4) [V, K| = Wg. Thus, it
remains to show the bijectivity of p. The injectivity follows from (2).

K

For proving the surjectivity of p we fix E € €2 and set
Ko := O*([O*(E;)C, J(T)]) and Wy := [Q(Z(02(Ky))), Ko

It suffices to show that Ky is a J(T')-component.

Clearly K, satisfies Ko since T € Syls L. Set X := O?(E)C. By 12.2.2 X
is a 2'-group and

X/Cx(J(T))| = 3.
Hence 8.4.4 on page 198 implies that
Ko = [X,J(T)] = Cs.

In addition, Ko/[Ky, J(T')] isa 2-group since Ky < [Ky, J(T)]O2(L). Thus,
the definition of Ky gives

Ky = OQ(KO) = [K()a‘](T)])

and Ky holds for Kj.

It remains to show that K satisfies 3. Again by the definition of Ky we
have [V, Ky < Wy. Hence, it suffices to show that |Wy| < 4.

Among all A € A(T) satisfying [Ko, A] £ O2(Ky) we choose A such that
Ca(Wp) is maximal. There exists d € Ko such that (A, A%) contains a

Sylow 3-subgroup D of K. By 8.4.2 on page 198, D acts fixed-point-freely
on Wy since Ky = DOy(Ky). It follows that

(6) Cw,(A) N Cwy(AY) = 1 and Wy = [Wo, A][Wo, A9].

Set AO = CA([WO,A])[WO,A] and A1 = CA(KQ/OQ(K())). Then ’A/Al‘ =
2, and 9.2.3 on page 233 implies

(7) Ay € .A(T) and [Wo,Ao] 7§ 1
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As
Ca(Wo)[Wo, A] < Cay(Wo)

the maximality of |Cy,(A)| yields either Ag < A; or Ayp = A. In the first
case
A§Os(Ko) = AgO2(Ko) < Cr([Wo, A]) N Cr([Wo, AY),

and (6) implies [Wy, Ao] = 1, which contradicts (7). In the second case the
same argument shows [Wpy, A1] = 1, and thus |A/C4(Wy)| = 2. Now the
maximality of |A| gives Cy,(A) = WpN A and

|A] > [WoCa(Wo)| = [Ca(Wo)|[Wo/Cw,(A)].

Thus
[Wo/Cw, (A)| = [Wo/[Wo, A]| = 2,

and |Wp| < 4 follows from (6). O
The next two results are consequences of 12.2.5:

12.2.6 Let L € L(T), K € K(T), and Z(T)N Wik # 1. Then T <
NL(K).

Proof. By 12.2.5 there exists a subgroup FE; as in 12.2.3 such that
Wy = [V,E;] and K = O*([0*(E;), J(T))).
Since by 12.2.3 (b), (d)
V,E;] N [V,Ef] =1 for € L\ Nr(E;).

The hypothesis Z(T) N Wi # 1 implies that T < Np(E;), and the claim
follows. =
12.2.7 Let K € Ko(T). Then the following hold:

(a) Ng(K)=Nc(Wk).

(b) K is a J(T9)-component for all g € G with J(TY9) < Ng(Wk).
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Proof. (a) Let L := Ng(Wg) and T < Ty €Syly L. Then J(T') = J(Tp)
by the definition of y(T"), so K is also a J(Tp)-component. It follows that
J(T()) ﬁ OQ(L), and by 12.2.1 L € ,C(To).

We apply 12.2.3 and 12.2.5 with the notation given there. Then there exists
E € Q) with
K = O*([0*(E), J(T)]) and Wk = [V, EJ.

Thus, by 12.2.3 (b) and (e)
E <L and J{L) = E.
On the other hand, the Frattini argument yields
L = Np(J(T))J(L) = NL(J(T))EC,

and by 12.2.2 C < N(J(T')). Now (a) follows.

(b) Let J(TY9) < Ng(Wk). Then J(T9) is a Ng(Wg)-conjugate of J(T'),
and (b) follows from (a). O

We are now able to prove the main result of this section.

12.2.8 Let K < L € L(T) such that K << (K, J(T)). Suppose that
K € Ko(T9) for some g € G. Then K € Kr(T), and in particular

K I L.

Proof. If K € Kr(T) then K I L by 12.2.5, and if J(T') < Np(K) then
K € Kr(T) by 12.2.7. Thus, we may assume now that

(%) J(T) £ Ni(K) 27 Ng(Wk).

We will show that this leads to contradiction.

We fix some notation:
L() = <K, J(T)>, L* = LoOQ(L), L1 = OQ(L())K,
and S € Syl G such that J(T) < SN L*=:T* € Syl, L*. Further

Z = Q(Z(S)), V* = (QZ(T*)L").
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(1) O2(Lo) < Ng(K).
By our hypothesis K J< Ly, so
K = 0*K) < 0*L,) < K.

This implies K = O%(L1), and (1) follows.
(2)  Z < Z(T*) and V* < Z(0s(Lo)).

Note that
Cs(O2(L)) < Oo(L) <Oo(L*) < T

and

=)
N
g
A
=
g
I
=

T) < Lo.

This implies Z < Z(T*) and QZ(T*)) < Z(O2(L*)) N Lg. Hence V* <
Z(05(Lg)) follows since Oz(Lg) < Oz(L*).

3) Wg=I[ZK]=I[V*"K].

By (1) and (2) [V*, K] < Z(02(K)) since Oz(K) < Oa(Lg). The coprime
action of K on Z(O2(Lg)) gives [V*, K] < Wgk. As [Wg| =4 and Z < V*
by (2), it suffices to show that [Z, K| # 1.

Assume that [Z, K] = 1. Then

K < Cu(Z) < Nu(S A L) < Nu(J(T)),
and thus 0
J(T) < O2(Lo) < Ng(K),

which contradicts (x). Hence (3) is proved.

We now derive a final contradiction. As J(T) = J(T%) and Oz(L) <
O2(L*) we get

Ca(02(L7)) < Cq(02(L)) < Os(L) < Oo(LY),

so L* € L(T*). We apply 12.2.3 to L* and V* (in place of L and V).

Let E; be one of the subnormal subgroups FE1, ..., . given there, and set
W; = [V*, E;]. According to (3) both subgroups FE; and K normalize
WrW;.
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On the other hand, by 12.2.3 (d) there are at most 2 L*-conjugates of W; in
Wi W; since |[WxW;| < 2% Hence K = O%(K) implies that K < Np«(W;)
and either Wy =W; or [W;, K| = 1.

The first case contradicts (). Hence, we have that [W;, K] = 1 for i =
1,...,r. It follows with 12.2.3 d) that

J(T),V*, K] =1 = [V, K, J(T)],
and then with the Three-Subgroups Lemma [K,J(T)] < C* := Cp- (V™).

By 12.2.2 C*J(T) is 2-closed, so K < Ng(J(T)). But this contradicts (3)
and (). O

The next result about the structure of J(7')-components will be used at the
end of the next section. It is independent of the other results of this section.

12.2.9 Let K € K(T) and Zy:=QZ(J(T))). Then

Zy = (Z() N Z(KJ(T)))(Z() N WK) and ‘Z() N WK| = 2.

Proof. Set L := KJ(T). By Ko we may assume that 7' € Syls L, and K
yields

(1) L/Os(L) = S;.

As J(T) QT and |L:T| = 3, there are exactly three conjugates of J(T')
in L and thus

(2) L= {(J(T),J(T)% for every d € L\T.

Set,

Vo= (QZ(T)") (£ Z(02(L))).
Then W NV # 1 since Wi < L, and Wi <V follows. The coprime
action of K on V shows that

) Wk =I[V,K,K]=[V,K] and C(V) = Oz(L).
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Let A € A(T) such that A £ O2(L). Then (1) and (3) imply that
Ca(V) = ANOy(L) and |A/Cy(V)| = 2.
In particular |A] < |[VCy(V)]|, and the maximality of A yields
Al = [Ca(V)V] = (AN O(L)V];
SO
(4)  A(O2(L)) € A(T) and Zp < Z(J(O2(L)))-

Now 9.3.9 on page 247 shows that [Zp, K] <V and thus by (3) [Zo, K] <
Wi. Set Vo := ZoWx and X := ZgNZ¢, d as in (2). Since WxNZ(T) # 1
and |Wg| =4, we get that

|V0:Zo| = |WK:(WKQZO)| < 2 and ‘V()X| < 4.
On the other hand, by (2) X < Z(L) and Z(L)NWg =1, so
Zy = X x (Z(T)NWkg),

and the claim follows. O

12.3 N-Groups of Local Characteristic 2

In this section G is an ZN-group of local characteristic 2 with O2(G) = 1.
Moreover, S €Syla G, Z = Q(Z(S)), and M is a 2-local subgroup of G
containing Ng(J(.9)).

As J(S) is characteristic in S, we have
Cal?) < No(S) < Na(J($)) < M,
and the Frattini argument shows that Ng(M) = M. Thus
M # M? for all z € G\ M.

If M is not strongly embedded in G, then there exists x € G\ M such
that M N M?® has even order. This leads to the following notation:

T (M) is the set of nontrivial 2-subgroups T' < M satisfying:
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(+)  There exists a 2-local subgroup L < G such that T'< L and L £ M.

12.3.1 M is strongly embedded in G if and only if T (M) is empty.

Proof. By the definition of 7 (M) it is evident that M is strongly embedded
in Gif T(M)=0.

Assume now that M is strongly embedded in G but T (M) # &. Then
") Ng(T) < M for every T € T(M).

Choose T € T(M) such that |T'| is maximal, and let 7" < L be as in (+);
so L £ M.

By ()
Nr,(T) < M N L for T < Tye Syl,L,

and the maximality of T' gives T' = Ng,(T') = Tp. In particular
Oo(L) < Ty < MN L.

Hence also Oy(L) € T(M), and (') yields
L < Ng(0o(L)) < M,

a contradiction. O

In view of J(T')-components introduced in the previous section we now
investigate subgroups T € T (M) that are maximal with respect to their
Thompson subgroups. More precisely, let

a(T) := |A|, Ae AT).

By 7*(M) we denote the set of Ty € T (M) that are maximal in the
following sense:

o If TeT(M) then a(T) < a(Tp).
o If TeT(M) with a(T) = a(Tp) then |J(T)| < |J(Tp)|.

e It T e T(M) with a(T) = a(Ty) and |J(T)| = [J(Ty)| then |T| <
|To|.
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12.3.2 Ng(J(T)) <M for every T € T*(M).

Proof. After conjugation in M we may assume that T'< S. If T'= S then
the choice of M gives yields Ng(J(T)) < M. If T'< S then

T < Ns(J(T)) < M n Ng(J(T)),

and the maximality of T" yields Ng(J(T)) € T(M); so Ng(J(T)) <M. O

12.3.3 Let T € T*(M) and L be a 2-local subgroup of G such that
J(T)<Ty e Syly L and L L M. Then

J(T) = J(Tp), Ty € T(M), and L € L(Tp).

Proof. By 12.3.2
T1 = NTO(J(T)) S M N L,

so the maximality of T yields J(T') = J(11) and thus J(T) = J(1p). In
particular Ty € T(M). Moreover, again by 12.3.2, J(Tp) £ Oz(L); and
L € L(T}) follows from 12.2.1. O

Because of 12.3.3 we are now able to to use the results of Section 12.2.

12.3.4 Let L be a 2-local subgroup of G and T € T*(M). Suppose
that T < L £ M. Then L € L(T), and in particular T € Syly L and

Ki(T) # 2.

Proof. Let T < Ty €Syly L. Then 12.3.3 shows that Ty € T(M) and
L € L(Tp). The maximality of T implies Ty = T. The remaining claim
follows from 12.2.5. O

We now use the set Ko(7T") introduced on page 349. For T € T*(M) let
Ke\um(T) be the set of K € Ko(T) such that

K £ M and O((K,T)) # 1.
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12.3.5 Kowm(T)# @ forall T € T*(M).

Proof. Let T € T*(M). By 12.3.4 there exists L € L£(T') such that L £ M.
The Frattini argument gives

L = Np(J(T))J (L),
so J(L) £ M by 12.3.2. Hence, by 12.2.3 and 12.2.5 there exists K €

Kr(T) such that K £ M.

It remains to prove that K € Ko(T'). Let L:=Ne(Wg) and J(T) <Tp <
Sylo L. Then L £ M since K < L but K £ M. Hence 12.3.3 implies that
J(T) = J(Tp) and thus K € Ko(T). O

12.3.6 Uniqueness Theorem. Let T' € T*(M) and K € Kg\n(T).
Then KJ(T) is contained in a unique mazximal 2-local subgroup L of G.
Moreover K I L and T € Syl, L.

Proof. Let L be the set of 2-local subgroups of G that contain KJ(T).
Then L is nonempty since Wg # 1 and KJ(T) < Ng(Wkg). Note that
the subgroups in £ are not contained in M since K £ M.

Let L € £ and J(T) < Ty €Syls L. It follows from 12.3.3 that
(1) K € K(Tp) and L € L(Tp),

so 12.2.5 implies

(2) K << L forall L elL.

We will show that £ and K, in place of &/ and A, satisfy the hypotheses
(1), (2), and (3) of 6.7.3 on page 158. As in 6.7.3 we set

Y ={K9|geG, KI<IJL} (Le€L).

Then (2) implies hypothesis 6.7.3 (1).

Let L € L, K9 € ¥;7 and K9 < L. Since J(T) < L we have K9 <4
(K9,J(T)), and 12.2.8 implies that K9 << L. This is hypothesis 6.7.3 (2).



360 12. N-Groups

For the verification of hypothesis 6.7.3 (3) let
Y=Y NY; and X := ().
Then K € ¥ and K << X since X < L. In particular
1 # Oz(K) < 02(X),

and Ng(O2(X)) is a 2-local subgroup of G. As J(T') acts by conjugation
on Yy, and X7 we get that

J(T) < Ng(X) < Na(O2(X)),

so Ng(O2(X)) € L. This shows hypothesis 6.7.3 (3).

Now 6.7.3 shows that £ contains a unique maximal element L. As the
definition of Ken s (T') yields

O2(<K? T>) 7£ 17

we also get T' < L. Thus, T € Syly L follows from 12.3.4. O

12.3.7 Let L, K and T be as in 12.3.6 and T < S, and let
Zy = QUZ(J(T))) and Z = Q(Z(S)).
Then ZoN Wk # 1, and one of the following holds:

(a) Z = ZO = CQ.
(b) Z:ZOgCQXCQ and T = S.
(C) Q(Z(T)) = ZO = 02 X 02 and |Ng(Z0) : CL(Z())| = 2.

Proof. Since T' € Syl, L and L is a 2-local subgroup we get Z < Z(T), i.e.,
(1) Z < Zy.
Let Zi := Cyz,(K). The 12.2.9 implies

(2) |ZO . ZKl =2 and Z 75 ZK;
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the latter since by our hypothesis Cg(Z) is 2-closed but not KJ(T). If
Zy = (5 then (a) holds. Thus, we may assume:

(3) |Zo| > 4.

We first treat the case
Neg(J(T)) < L.

Then Ng(J(T)) =T and thus S =T. Hence, L has the same property as
M. In particular T € T*(L) since M # L.

According to 12.3.5 (with the roles of L and M interchanged) there exists
FeKa\p(T). Let Zp := Cgz(F). As for Zx we get

(4) |Z() : ZF| =2 and Z 75 ZF

If Zx N Zp # 1 then the uniqueness of L yields
(F\K,J(S)) < Nag(Zx N Zp) < L,
which contradicts F' £ L. Thus, we have
Zx N Zp = 1,
and (2), (3), and (4) imply
Zo =2 Cy x Oy and Zig = Zp = (.

If (b) does not hold, then (1), (2), and (4) show that Z has order 2. Moreover,
Z is neither conjugate to Zx nor Zp since Cg(Z) is 2-closed. As Z < Zy <
S this implies that Z% = Zp for some x € S and

On the other hand x € S < L; and the uniqueness of L shows that
(F,K* J(S)) < L* = L.

This contradicts F' £ L.

We are left with the case
Ng(J(T)) £ L.

Let g € No(J(T))\ L. If Zx N Zj, # 1, then the uniqueness of L yields

KJ(T) < No(Zgx 0 Z%) < L,
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and similarly, with (K9, M9, L9) in place of (K, M, L),
Ne(Zg 0 7%) < L9,

This shows that KJ(T) < L9, so LY = L. Since L is a maximal 2-local
subgroup we get g € L, a contradiction.

Hence Zg N Z3, =1; and, as above, by (2)
Zo = 02 X 02.

Next we show:
(5) Zop < Z(T).

Otherwise there exists t € T such that [Zy,t] # 1, and in particular Z < Zj.
As above Zg, Z3., and Z are the three subgroups of order 2 in Zp; and
Z is neither conjugate to Zx nor to Z¥.. It follows that Zi = Z%. and

tg~! € Ng(Zk) < L,

which contradicts g ¢ L. Hence, (5) is proved.
From Q(Z(T)) < Zp we get

Zo = AZ(T)),
and the uniqueness of L gives
Ca(Zy) < Ca(Zk) < L.

If Z =2y, then S=T and (b) follow.
Assume that Z # Zy. Then T' < S;s0 T < Ng(Zy) and

INs(Z0)/Cs(Zo)| = 2 =|Nc(Zo)/Ca(Zo)l,

since Z is neither conjugate to Zx nor to Zy. in Ng(Zp). Thisis (¢). O

12.3.8 Let T € T*(M) and K € Ke\y(T). Then K is normal in
(K, T).
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Proof. Possibly after conjugation in M, we may assume that 7" < S. The
Uniqueness Theorem (12.3.6) shows that (K,T) is contained in a unique
maximal 2-local subgroup L and T &€ Syly L. Moreover, 12.3.7 implies that

Z(T) N Wi # 1.

Now the claim follows from 12.2.6. O

12.3.9 Let T € T*(M). Then there exist two different J(T')-components
Ki,Ky € K(T) such that for P;:= (K;,T), i =1,2, the following hold:

Cc(02(F;)) < O2(F).

)

(b)

() P,/Os(P;) = Ss.
) [QZ(T), Pl # 1.
)

O2((P1, P2)) = 1.

Moreover, P; is contained in a unique maximal 2-local subgroup L; of G
and T € Syly L;.

Proof. By 12.3.5 there exists K € K¢\ (T), and according to the Unique-
ness Theorem (12.3.6) P is contained in a unique maximal 2-local subgroup
L of G. In addition T € Syly L, and thus also T' € Syls P;. It follows that

Cc(O2(P1)) < Ca(O2(L)) < Ozx(L) < Oz(P).

From 12.3.7 we get that Z(T)NWyg, # 1. This shows that [Q(Z(T)), K1]| #
1. Moreover, by 12.3.8 K; is normal in P, i.e., P, = K;T. Now (a)—(d)
follow for 7 = 1.

Assume first that Ng(T) € L. Let g € Ng(T)\ L, and set Ky := K{. Then
P, and P; are conjugate, so P also has the properties (a)—(d). In addition
LY is the unique maximal 2-local subgroup of G containing P,. Hence, (e)
follows since otherwise L = L9 and g € L.

Assume now that Ng(T) < L. Then T € Syly G, and after conjugation in
M we may assume that

T =25
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From 12.3.7 we get Z = Zy, Zy as in 12.3.7; so

Na(J(S)) < No(Zo) < Ne(S) < L3

Hence, L has the same property as M. As in the proof of 12.3.7 there exists
Ky € K\ (T'); and as above, with L in place of M, the properties (a)—(d)
follow for Ps.

For the proof of (e) assume that Os((P1, P»)) # 1. Then the Uniqueness
Theorem for K; shows that P, < L. This contradicts Ko £ L. O

We now use the results of Section 10.3 provided by the amalgam method.

12.3.10 Let T € T*(M). Then there exist two different mazimal 2-local
subgroups Py and Py of G such that T € Syl, P;, i = 1,2, and either

PlgP2§S4 or P1§P2§S4XCQ.

Proof. Let Py < Ly and P, < Lo be as in 12.3.9, so in particular
T e Sy12 L1 N Sy12 Lo.

From 10.3.11 we get the desired structure for P;. It remains to prove that
P, =L, for : =1,2. We fix ¢ and use the notation

(L, K, P) in place of (L;, K;, P;).

Then
Z(T) < O2(L) < 02(P) <T € Syl, L,

and in addition (Z(T)?) = Oy(P). It follows that
O2(L) = O9(P).

By 12.2.3 and 12.3.6 K is the unique J(7')-component of L since |O2(L)|
8. Hence, again by 12.2.3 and 12.2.5, Wk is normal in L and |O2(L)/Wik|
2. Now 8.2.2 on page 184 shows that Cp(Wk) is a 2-group, so Cr(Wk)
OQ(L). Thus, L/OL(WK) = 53 implies L=P.

O I IAIA

3Use the condition equivalent to Z given on page 335.
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We are now able to prove Theorem 1 and Theorem 3 stated in the introduc-
tion of this chapter.

Proof of Theorem 3: Let H := O%(G) and M be as introduced in the
beginning of this section. We assume that M is not strongly embedded in
G. Then 12.3.1 implies that T (M) # @&. Thus, also T*(M) # @, and we
are allowed to apply 12.3.10. Let P, P>, T be as described there and

M, . =HnNP (i=172).
Furthermore, for i = 1,2, set
Zi = Z(Pl),
Q; = 02(0%(P)) (£ HNT), and

Ty == (@1, Q2).

Then @)1 and @9 are two elementary Abelian subgroups of order 4, and
they intersect in a subgroup of order 2 since Q)1 # (2. Hence, Tj is a
dihedral group of order 8. As Ty is in M;, we get for ¢+ = 1,2

Migszl or Mz:Pz

Assume first that M; = Sy, and let L be a maximal 2-local subgroup of H
containing M;. Then

NOQ(L)(QZ') < OyL)yNn PN H = 0y(L) N M; = Q;

since Ng(Q;) = P;. It follows that Q; = O2(L) and thus L = M;.

Hence, to prove Theorem 3 it suffices to show that M; = Sy = Ms. We will
show that the other case

M; =P, =Cy xS (i=1,2)
leads to a contradiction. Thus, from now on we assume that
T < H.

Set (z) := Z(Tp) and (z;) := Z;. Then

“Theorem 2 has already been proved in Section 12.2.
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(1) O2(R) = (2:) x Qi; Z(T) = (2) X (z) and (2) = Q1N Q2.

(2)  A(T) ={02(P1), 02(P2)}-

(3)  Os(P)UOs(Py) = {z €T| 2% =1}.

Moreover, 7 is not a square in F;.5 The maximality of P; yields Cg(z) =

P;. Hence, z; is also not a square in G. On the other hand, z is a square

in Ty, so all involutions of T are squares since they are conjugate to z (in
(P, Py)). It follows:

(4) zNTy=@ for i=1,2.
Let S € Syla G such that

T < SnNH.

If T=SNH, then T €Syly H and Thompson’s Transfer Lemma (applied
to H) shows that z; is conjugate to an involution of T, which contradicts
(4). Thus, we have

T < SNH,

in particular T < Ng(T). The maximality of P; together with P; # Py
implies that Ng(T') acts transitively (by conjugation) on each of the sets

{ZLZZ}a {Q17Q2}) and A(T)a

and in each case T is the kernel of that action. This gives |Ng(T)/T| = 2
and

(5) Q(Cr(x)) = (z) for every x € Ng(T)\T.

In particular
(z) = Q(Z(95)) = 2.

As every element of A(Ng(T')) has order at least 8, (2) and (5) imply
T = J(T) = J(Ns(T));
and thus T = J(S). In particular 7' < S. Hence, we have

(6) |S:T|=2, SeSyleH and J(S)=J(T)=T.

5That is, there is no x € P; such that z; = x2.
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Assume first that there exists an involution ¢t € S\ T. Let g € G such that
Cs(t) < Cge(t) € Syl, Ca(t).

If Cr(t) = Z, then Cg(t) = Z(t) = Cyx Co; and by 5.3.10 S is a dihedral or
semidihedral group. This contradicts the existence of an elementary Abelian
subgroup of order 8 in §.

We have shown that Z < Cr(t). By (5) z is a square in Cr(t) and thus in
S9. Since |SY : TY| =2 we get
z € T9.

Now (3), applied to 79, gives a subgroup A € A(T9) such that |A| =8
and z € A. Hence, Z implies that A < Cg(Z) < Ng(S), so by (6)

A e A(T).

On the other hand, Thompson’s Transfer Lemma shows that ¢ is conjugate
to an involution in 7. Thus, by (3) there exists an elementary Abelian
subgroup B of order 8 in Cg(t), and we may assume that B < S9. Again
from (6) we get that B € A(TY). Hence, (2) implies that |BN A| > 4 and

BnA<Cp(t),

which contradicts (5).

We have shown that there are no involutions in S \ 7. Now we determine
the focal subgroup S N H’'. Since H = O?(H) we get from 7.1.3 on page
166 and (6)

(7) S=SnH =(y 'y|yecsS, ye8 ged).

Let y,99 € S, g € G. If y and y9 are both in T, then also y'y9 € T.
Assume that y ¢ T. Then o(y) > 2, and (5) shows that Q((y)) = Z. Either
also y? ¢ T and with the same argument Q({y)?) = Z, or 49 € T and again
Q((y)?) = Z since z is the only square in T.

We have shown that

Qy) = 2 = Q")) if o(y) > 2.

Thus in this case Z = Z9 and g € Ng(S) by Z. As |S : T| = 2, we
again get y~'y9 € T. Hence, (7) implies that that S = SN H' < T, a
contradiction. O
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Proof of Theorem 1: As Theorem 2 was already proved at the end of Section
12.1 we may assume that HZ has local characteristic 2. It is evident that
HZ is also a ZN-group. Thus, we are allowed to apply Theorem 3 to HZ.

If HZ possesses a strongly embedded subgroup, then (a) of Theorem 1
holds. In the other case H contains a maximal 2-local subgroup P isomor-
phic to S4. We want to show that then case (b) of Theorem 1 holds.

We have
OQ(P) = 02 X 02 and P = NH(OQ(P))

Let D be a Sylow 2-subgroup of P, so D is a dihedral group of order 8.
After conjugation in H we may assume that

D<SnNH =R

Let
zZ* = Q(Z(R)).

Then Z* < O2(P), and there exist ¢t € Oz(P) such that
OQ(P) = 7" x <t> = CQ X 02.

It follows that
Cgr(t) = Cr(02(P)) = O2(P),

and 5.3.10 on page 117 implies that R is a dihedral or semidihedral group.
Hence, (b) of Theorem 1 holds. O



Appendix

In this Appendix we give the results mentioned in Chapters 10 and 12.

Let G be a group. By Z*(G) we denote the inverse image of Z(G /O (QG))
in G.

Brauer, Suzuki [32]: Suppose that the Sylow 2-subgroups of G are quater-
nion groups. Then Z*(G)/Oy(G) = Cy.!

Glauberman (Z*-Theorem) [49]: Let S be a Sylow 2-subgroup of G.
Then
r e Z7%Q) < 2% n Cy(z) = {z}.

Gorenstein, Walter [59]: Suppose that Oy (G) = 1 and that the Sylow
2-subgroups of G are dihedral groups. Then F*(G) is isomorphic to

PSLs(q), ¢ = 1(mod?2), or Ar.

Alperin, Brauer, Gorenstein [22]: Suppose that G is simple and that the
Sylow 2-subgroups of G are semidihedral groups. Then G is isomorphic to

PSL3(q), ¢ = —1(mod4), PSU3(q), ¢ = 1(mod4), or M.

Bender [29]: Suppose that G possesses a strongly embedded subgroup.? Then
one of the following holds:

'"Hence, the Sylow 2-subgroups of G/Z*(G) are dihedral groups, so the structure of
G/Z*(G) is given by the Theorem of Gorenstein-Walter, below.
2A strongly 2-embedded subgroup in the notation of Chapter 10.

369
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(i)  The Sylow 2-subgroups of G are cyclic or quaternion groups.

(i) G possesses a normal series 1 < M < L < G such that M and G/L
have odd order, and L/M is isomorphic to

PSLy(2"), SZ(ZQn_l), or PSU3(2") (n > 2).

Goldschmidt [57]: Let S be a Sylow 2-subgroup of G and A an Abelian
subgroup of S such that

acA a?e€S (9geG) = a?ecAl
Suppose that that G = (A®) and Oy (G) = 1. Then
G = F*(G), A = 0:(G)UT),

and for every component K of G the factor group K/Z(K) is isomorphic
to:

PSL,(27%), Sz(2?"~1), PSU3(2") (n > 2), PSLa(q), ¢ = 3,5 (mod 8),
R(3%" 1) (n > 1), or Ji.

Thompson [94]: Let G be a nonsolvable group all of whose p-local sub-
groups are solvable for every p € w(G). Then F*(G) is isomorphic to

PSLQ(Q) (q > 3), SZ(QQn_l) (n > 2), A7, M117 PSL3(3), PSU3(3), or
2 /
Fa(2).

Gorenstein, Lyons [61], Janko [73], Smith [83]: Let G be a nonsolvable
group all of whose 2-local subgroups are solvable. Then F*(G) is isomorphic
to

PSLQ(Q), q> 3, SZ(QQn_l), PSU3(2n) (n > 2), A7, M11, PSL3(3),
PSU3(3), or 2F4(2)/.

Classification Theorem.? Every finite simple group is isomorphic to one
of the following groups:

3 A is strongly closed in S with respect to G.
“See [10] and the survey article [84].
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1. A cyclic group of prime order,
2. An alternating group A, for n >15,

3. A classical linear group: °
PSLn(q), PSUn(q), PSpay,(q), or PO5(q),

4. An exceptional group of Lie type:S
°Du(q), E6(q), *Ee(q), E7(q), Es(q), Fi(q), *F1(2"), Ga(q), *G2(3"),
or 2By(2"),
5. A sporadic simple group:
My, Mia, Moy, Mss, My (Mathieu-groups); ”
Ji, Ja, J3, Jy (Janko-groups); &
Coy, Coz, Coz (Conway-groups);
HS, Mc, Suz;
Figy, Fios, Fig, (Fischer-groups);
Fy (the Monster?), Fy, F3, Fs; He, Ru, Ly, ON.

®A description of these groups can be found in [13], and as groups of Lie type in [5].

6See [5].

"These groups have been found by Mathieu [77] around 1860. The first transparent
construction was given by Witt [100] in 1938.

8.J1 was found in 1965 [72], after the Mathieu-groups this was first other sporadic group.

9Fy is the largest sporadic group, its order is

246,320 .59 76 .112.13%.17.19-23-29-31-41-47-59 - 71.
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imprimitive, 84, 91

irreducible, 190, 211

nilpotent, 183
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on a group, 18
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regular, 78

semisimple, 200
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amalgam method, 281
associative law
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Cartesian product, 27
Cauchy, theorem of, 62
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of an element, 59
characteristic, 17, 261
characteristic subgroup, 17, 45, 123
chief series, 40
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closed, 130

conjugacy, 60

nilpotent, 102
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Clifford, 212

theorem of, 202
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closure, weak, 169
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of a subgroup, 9
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disjoint, 88
cyclic group, 3
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dihedral group, 34, 109, 116, 121
direct product, 27, 28

distance (of vertices), 283

edge, 282
element
p-, 9
conjugate, 2
elementary Abelian group, 46
endomorphism, 11
epimorphism, 11
equivalent action, 78
even permutation, 89
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exponent, 49
external direct product, 27
extraspecial group, 107

factor group, 13
factor, composition, 40
Feit-Thompson
theorem of, 122
Fitting subgroup, 104
generalized, 143
fixed points, set of, 59
fixed-point-free action, 181, 194
focal subgroup, 167
Frattini argument, 58, 66
Frattini subgroup, 105
Frobenius
complement, 80, 81, 182
group, 79, 81, 182
kernel, 80, 81, 182
normal p-complement theorem,
170
partition, 79
theorem of, 80

Gaschiitz, theorem of, 74
generalized Fitting subgroup, 143
Glauberman, 337

Z J-Theorem of, 249

Completeness Theorem of, 326
Goldschmidt, 337
Gorenstein-Walter, 337
Griin, theorem of, 168
graph, 282

connected, 283
greatest common divisor, 22
group, 1

C-, 337

N-, 335

m-, 129

m-closed, 132
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m-separable, 132, 133

p-, 9, 100, 108
p-stable, 253
IC-, 131

Abelian, 43, 45
alternating, 67, 89
automorphism, 16
cyclic, 3, 43
dihedral, 34, 116
elementary Abelian, 46
extraspecial, 107
factor, 13
finite, 3
Frobenius, 79
nilpotent, 62, 99
perfect, 25
permutation, 77
projective linear, 223
quasisimple, 141
quaternion, 20, 110, 114
semidihedral, 109, 116
semisimple, 35
simple, 12
solvable, 40, 121
special, 107
special linear, 223
super-solvable, 124
symmetric, 3, 55, 87
group action, 55
group table, 3

Hall m-subgroup, 135
Hall-Higman-reduction, 203
homogeneous A-components, 201
homomorphism, 10

natural, 13

transfer, 164
homomorphism theorem, 13
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identity, 1
image, 11

inverse, 11
imprimitive action, 84, 91
imprimitivity, set of, 84
index, 7
inner automorphism, 16
internal direct product, 28
invariant, 18
invariant subgroup, 18
inverse, 1
inverse image, 11
involution, 34
irreducible action, 190
isomorphic, 11
isomorphism, 11
isomorphism theorems, 13

Jordan-Holder, theorem of, 41

kernel, 11, 49
Frobenius, 80

Lagrange, theorem of, 8
laws of exponents, 3
left transversal, 8
lemma
Burnside’s, 167
Schur’s, 211
length
p-, 141
of a cycle, 87
of a path, 283
of a subgroup series, 39
of an orbit, 58
local characteristic 2, 336
locally complete signalizer functor,
311

mapping, commutator, 197
Maschke, 212

Index

theorem of, 200
maximal subgroup, 4
method of Wielandt, 71
minimal normal subgroup, 36, 122
minimal polynomial, 225
minimal subgroup, 4
modulo, 13
monomorphism, 11
multiplication
right, 57

natural homomorphism, 13
nilpotent
action, 183
class, 102
group, 62, 99
normal, 12
normal p-complement, 169
normal series, 39
normal subgroup, 12
largest solvable, 124
minimal, 36, 122
nilpotent, 104
regular, 78
solvable, 124
trivial, 12
normalize, 59
normalizer, 59

O’Nan-Scott, theorem of, 155
odd permutation, 89
orbit, 58
order
of a group, 3
of an element, 5

partition, 191
Frobenius, 79

path, 283

perfect group, 25
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permutation

even, 89

odd, 89
permutation group, 77
polynomial, minimal, 225
post-classification theorem, 259
power, 2
prime, 9
primitive

action, 84

subgroup, 146, 262
primitive pair, 262

of characteristic p, 262

solvable, 262
product, 1

Cartesian, 27

direct

external, 27
internal, 28

semidirect, 34

wreath, 96
product of subsets, 6
projective line, 222
projective linear group, 223
projective space, 222
proper subgroup, 4

quadratic action, 225
quasisimple group, 141
quaternion group, 20, 110, 114

radical, 129

rank, 48

regular action, 78

regular normal subgroup, 78
representatives, right coset, 8
residue, 129

right multiplication, 57

Schreier’s conjecture, 152
Schur, lemma of, 211
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Schur-Zassenhaus, theorem of, 73,

125
section, 15
X-, 40

semidihedral group, 109, 116
semidirect product, 34
semisimple action, 200
semisimple group, 35
separable, -, 132
series

central, 102

chief, 40

commutator, 123

composition, 40

normal, 39

subgroup, 39

subnormal, 14, 39
set of imprimitivity, 84
signalizer functor

complete, 304

locally complete, 311

restriction of, 305

solvable, 304
simple, 12

X-, 40
simple group, 12
simplicity of A,,, 91
solvable group, 40, 121
solvable normal subgroup, 124
solvable primitive pair, 262
solvable signalizer functor, 304
special group, 107
special projective linear group, 223
stabilizer, 57
strongly closed subgroup, 370
strongly embedded, 262
strongly embedded subgroup, 336
subgroup, 4

X- invariant, 18

p-, 9, 45
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p-local, 261
Carter, 124
characteristic, 17, 45, 123
commutator, 24
cyclic maximal, 108
Fitting, 104
focal, 167
Frattini, 105
generated by, b
Hall -, 135
maximal, 4
minimal, 4
normal, 12
of Z, 21
primitive, 146, 262
proper, 4
regular normal, 78
strongly closed, 370
strongly embedded, 336
subnormal, 14
Sylow p-, 63
Thompson, 236
trivial, 4
subgroup series, 39
subnormal, 14
subnormal series, 14, 39
subnormal subgroup, 14, 99
super-solvable group, 124
Sylow p-subgroup, 63
Sylow system, 138
Sylow theorem, -, 136
Sylow, theorem of, 62, 64
symmetric group, 3, 55, 87
system, Sylow, 138

theorem
transitivity, 309
homomorphism, 13
post-classification, 259

Index

theorem of

Baer, 160
Bender, 264
Burnside, 169
Cauchy, 62
Clifford, 202
Feit-Thompson, 122
Frobenius, 80
Gaschiitz, 74
Griin, 168
Jordan-Holder, 41
Lagrange, 8
Maschke, 200
O’Nan-Scott, 155
Schur-Zassenhaus, 73, 125
Sylow, 62, 64
Thompson, 205
Thompson-Wielandt, 264
Wielandt, 157, 160
theorems, isomorphism, 13
Thompson
p-complement theorem, 255
P x (Q-Lemma, 187
theorem of, 205
Transfer Lemma of, 338
Thompson factorizable, 238, 248
Thompson subgroup, 236
Three-Subgroups Lemma, 26
Timmesfeld Replacement Theorem,
233
transfer homomorphism, 164
Transfer Lemma of Thompson, 338
transitivity theorem, 309
transposition, 88
transversal, 8
trivial subgroup, 4
twisted wreath product, 96

vertex, 281
conjugate, 282
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vertices
adjacent, 281
distance of, 283

weak closure, 169

Wielandt
method of, 71
theorem of, 157, 160
wreath product, 96
twisted, 96
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