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Question 1

Spherical harmonics are the simultaneous eigenstates of the L2 and Lz operators in the
spatial angular basis. Let’s label them by |l,m⟩. Let n⃗i be a unit vector defined by
(sin θi cosϕi, sin θi sinϕi, cos θi). We can write:

J =
∑
m

Y ∗
lm(n⃗1)Ylm(n⃗2)

=
∑
m

⟨l,m|n⃗1⟩⟨n⃗2|l,m⟩

=
∑
m

⟨n⃗2|l,m⟩⟨l,m|n⃗1⟩

When a unitary rotation operator U(R) acts on the states |n⃗i⟩, we get

J ′ = ⟨n⃗′
2|n⃗′

1⟩

=
∑
m

⟨n⃗2|U †(R)|l,m⟩⟨l,m|U(R)|n⃗1⟩

Let’s introduce two identity operators

J ′ =
∑
m

⟨n⃗2|
∑
l2,m2

|l2,m2⟩⟨l2,m2|U †(R)|l,m⟩⟨l,m|U(R)
∑
l1,m1

|l1,m1⟩⟨l1,m1|n⃗1⟩

Since a rotation cannot change the value of l (the magnitude of the angular momentum has
to remain the same), we can write

J ′ =
∑
m

∑
l2,m2

∑
l1,m1

⟨n⃗2|l2,m2⟩⟨l2,m2|U †(R)|l,m⟩δll2δll1⟨l,m|U(R)|l1,m1⟩⟨l1,m1|n⃗1⟩

=
∑
m

∑
m2

∑
m1

⟨n⃗2|l,m2⟩⟨l,m2|U †(R)|l,m⟩⟨l,m|U(R)|l,m1⟩⟨l,m1|n⃗1⟩

=
∑
m

∑
m2

∑
m1

⟨n⃗2|l,m2⟩U l†
m2m

(R)U l
mm1

(R)⟨l,m1|n⃗1⟩

1



From unitarity of U(R), we know that
∑

m U
†
m1m

Um,m2 = δm1m2 . Using thus in the expression
above, we get

J ′ =
∑
m2

∑
m1

⟨n⃗2|l,m2⟩δm1m2⟨l,m1|n⃗1⟩

=
∑
m2

⟨n⃗2|l,m2⟩⟨l,m2|n⃗1⟩

=
∑
m

⟨n⃗2|l,m⟩⟨l,m|n⃗1⟩

= J
Now that we know that the quantity is rotationally invariant, we can rotate the coordinate

system such that one of the n⃗i’s is along the z direction. Here I choose n⃗2. Choosing θ to be
the angle between n⃗1 and n⃗2, we get

J =
∑
m

Y ∗
lm(θ, ϕ)Ylm(0, 0)

=
∑
m

Y ∗
lm(θ, ϕ)δm0

√
2l + 1

4π

=

√
2l + 1

4π
Y ∗
l0(θ, ϕ)

=
2l + 1

4π
Pl cos θ

where I used the definition of Ylm twice:

Ylm(θ, ϕ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
eimϕPm

l (cos θ)

Thus,

Pl cos θ =
4π

2l + 1
J

Question 2

Let’s first write the wavefunction ψ(r⃗) in spherical coordinates:

ψ(r⃗) = (x+ y + 3z)f(r)

= (r sin θ cosϕ+ r sin θ sinϕ+ 3r cos θ)f(r)

= Ω(θ, ϕ)rf(r)

We can use spherical harmonics to write the angular part of the wave function and make
our lives easier:

ω(θ, ϕ) =

√
2π

3
{(Y1,−1 − Y1,1) + i(Y1,−1 + Y1,1)}+ 6

√
π

3
Y0,1

= (i− 1)

√
2π

3
Y1,1 + 6

√
π

3
Y1,0 + (1 + i)

√
2π

3
Y1,−1
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All the spherical harmonic terms have l = 1, telling us that

L2ψ(r⃗) = l(l + 1)ℏ2ψ(r⃗)
= 2ℏ2ψ(r⃗)

In other words, the state ψ(r⃗) is an eigenstate of the L2 operator. Another way to see this
would be to operate the L2 operator directly on the wavefunction to get the same answer.
Thus we will always measure L2 = 2ℏ2 with probability 1.

As the wavefunction has m = -1, 0, +1 terms, an Lz measurement can give us −ℏ, 0andℏ.
For calculating probabilities, let’s first calculate the absolute squared values of the coeffi-
cients:

|⟨m = 1|Θ⟩|2 =

∣∣∣∣∣(i− 1)

√
2π

3

∣∣∣∣∣
2

=
4π

3

|⟨m = 0|Θ⟩|2 =
∣∣∣∣6√π

3

∣∣∣∣2
=

36π

3

|⟨m = −1|Θ⟩|2 =

∣∣∣∣∣(i+ 1)

√
2π

3

∣∣∣∣∣
2

=
4π

3

The sum of these values is

Normalization factor N =
4π

3
+

36π

3
+

4π

3

=
44π

3

Thus the probabilities are:

P (Lz = +ℏ) =
|⟨m = 1|Θ⟩|2

N

=
4

44
≈ 0.09

P (Lz = 0) =
|⟨m = 0|Θ⟩|2

N

=
36

44
≈ 0.82

P (Lz = −ℏ) =
|⟨m = −1|Θ⟩|2

N

=
4

44
≈ 0.09
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Question 3

i)

The ladder operators for angular momentum generators operate as (Sakurai Eq 3.5.41),

⟨j′,m′|J±|j,m⟩ =
√

(j ∓m)(j ±m+ 1)ℏδj′jδm′,m±1

Thus we get

⟨j = 2,m = −1|J−|j = 2,m = 0⟩ =
√

(2 + 0)(2− 0 + 1)ℏ =
√
6ℏ

⟨j = 1,m = 1|J+|j = 1,m = 0⟩ =
√
(1− 0)(1 + 0 + 1)ℏ =

√
2ℏ

⟨j = 1,m = −1|J−|j = 2,m = 0⟩ = 0

ii)

To show that an angular momentum representation with 2j + 1 states forms an irreducible
representation, it would suffice to find a symmetry generator whose action outputs a state
outside the subspace. Let’s work in the |mj⟩ basis and assume there exists a proper subspace
W that is closed under a symmetry generator action. Let k be the highest index such that
|mk⟩ is not in W . Now, let’s consider an arbitrary state |ψ⟩ =

∑
i ai|mi⟩ ∈ W . Let p be the

minimum index such that ap ̸= 0. For the symmetry generator J+, since ⟨mk|Jk−p
+ |ψ⟩ ̸= 0

and |mk⟩ ̸∈ W , we can say that the representation is indeed an irreducible representation.

iii)

From the previous part, we know that the vector spaces corresponding to j = 2 and j =
1/2 are irreducible representations. So in this 7 dimensional space, we can always choose a
sub-space corresponding to the j = 2 or the j = 1/2 representation which is closed under
symmetry generator actions by definition. Thus, it is a reducible representation.
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Question 4

There are at least two ways of doing this. One is to use the relation for addition of angular
momenta:

J1 ⊗ J2 = (J1 + J2)⊕ (J1 + J2 − 1)⊕ (J1 + J2 − 2)...⊕ |(J1 − J2)|

If you’re not familiar with this, the section on ‘The “Composite” Representation’ on Pg 8 of
these notes might be helpful) For the system of three spin-1/2 particles in the question, we
have

1

2
⊗ 1

2
⊗ 1

2
= (

1

2
⊗ 1

2
)⊗ 1

2

= (1⊕ 0)⊗ 1

2

= (1⊗ 1

2
)⊕ (0⊗ 1

2
)

= (
3

2
⊕ 1

2
)⊕ (

1

2
)

=
3

2
⊕ 1

2
⊕ 1

2

So the corresponding eigenstates labeled by |S,M⟩ are |3
2
, 3
2
⟩, |3

2
, 1
2
⟩, |3

2
,−1

2
⟩, |3

2
,−3

2
⟩, |1

2
, 1
2
⟩1,

|1
2
,−1

2
⟩1, |12 ,

1
2
⟩2, |12 ,−

1
2
⟩2. The eigenvalues for S2 will be S(S + 1)ℏ2 and Sz will be Mℏ.

Therefore, for S2, we get 15
4
ℏ2 with multiplicity 4 and 3

4
ℏ2 with multiplicity 4.

Another way is to write S⃗2 as

S⃗2 = S⃗2
1 + S⃗2

2 + S⃗2
3 + 2S⃗1S⃗2 + 2S⃗2S⃗3 + 2S⃗1S⃗3

but we should be careful that these operators are acting on their respective vector spaces.
It is useful to notice that

2S⃗iS⃗j = SixSjx + SiySjy + SizSjz

= 2SizSjz + Si+Sj− + Si−Sj+

Now working in the |S1z⟩|S2z⟩|S3z⟩ basis, we can construct an 8× 8 matrix and diagonalize
it to get the same answer.
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