
Solutions to Problem Set 1

Physics 342

by: Nina Coyle (ninac@uchicago.edu)

Note: In these solutions we use the convention that the |0〉 , |1〉 states are eigenstates of σz
with |0〉 ≡ |+〉 and |1〉 ≡ |−〉.

1 Bell states

(i) To show whether a state is entangled, we need to see whether we can write it as a product
of two one-qubit states, |β00〉 = |ψ1〉⊗|ψ2〉. Let’s write down general |ψ1〉 and |ψ2〉, and then
equate to |β00〉 to constrain the general one-qubit states.

|β00〉 = (a |0〉+ b |1〉)⊗ (c |0〉+ d |1〉) (1.1)

= ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉 (1.2)

≡ 1√
2

(|00〉+ |11〉) (1.3)

So we have the following constraints:

ac =
1√
2

ad = 0 (1.4)

bc = 0 bd =
1√
2

(1.5)

From the ad constraint, we know that at least one of a or d equals 0. But a cannot be 0 since
ac is nonzero, and d cannot be 0 since bd is nonzero. Thus we see that there is no solution,
and |β00〉 cannot be written as a product of two single qubit states.

(ii) We can use the same approach for the other |βxy〉.

For |β01〉 = (|01〉+ |10〉)/
√

2,

ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉 ≡ 1√
2

(|01〉+ |10〉) (1.6)

gives the constraints

ac = 0 ad =
1√
2

(1.7)

bc =
1√
2

bd = 0 (1.8)

which is impossible by the same reasoning as in part (i). You can apply this to the remaining
|βxy〉 to find that they are all entangled.
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(iii) There are two ways to interpret this question. One is to take a state that is a tensor
product of two general one-qubit states:

|ψ〉 = (a |0〉+ b |1〉)⊗ (c |0〉+ d |1〉) (1.9)

The other is to take a general two-qubit state

|ψ〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉 (1.10)

As we’ve just seen in parts (i) and (ii), these two formulations are not the same. Recall that
not all two-qubit states of the second form can be written as a product of state 1 times state
2. To see this, you can just take the Bell state |β00〉 = (|00〉 + |11〉)/

√
2 from part (i) as

an example. Thus, the first interpretation considers a subset of the states considered in the
second interpretation.

Interpretation 1
The circuit we’re considering first applies a Hadamard gate to bit 1, then a CNOT gate. So
first, let’s apply the Hadamard gate to bit 1:

|ψ〉 = (a |0〉+ b |1〉)⊗ (c |0〉+ d |1〉)→ 1√
2

((a+ b) |0〉+ (a− b) |1〉)⊗ (c |0〉+ d |1〉) (1.11)

Now to apply the CNOT gate, let’s expand out into the |00〉 , |01〉 , |10〉 , |11〉 basis:

|ψ〉 =
1√
2

(
c(a+ b) |00〉+ d(a+ b) |01〉+ c(a− b) |10〉+ d(a− b) |11〉

)
(1.12)

→ 1√
2

(
c(a+ b) |00〉+ d(a+ b) |01〉+ c(a− b) |11〉+ d(a− b) |10〉

)
(1.13)

Let’s check this with an example we have already tried. Take |ψ〉 = |00〉, which corresponds
to a = c = 1, b = d = 0. We get:

|00〉 → 1√
2

(
1 |00〉+ 0 |01〉+ 1 |11〉+ 0 |10〉

)
=
|00〉+ |11〉√

2
(1.14)

Interpretation 2
We’ll have to deal with a few more terms for the Hadamard gate than in the first case, but
otherwise the approach is very similar. The Hadamard gate will do the following:

|ψ〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉 (1.15)

→ a√
2

(|00〉+ |10〉) +
b√
2

(|01〉+ |11〉) +
c√
2

(|00〉 − |10〉) +
d√
2

(|01〉 − |11〉) (1.16)

=
1√
2

(
(a+ c) |00〉+ (b+ d) |01〉+ (a− c) |10〉+ (b− d) |11〉

)
(1.17)
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Now we apply the CNOT gate:

|ψ〉 → 1√
2

(
(a+ c) |00〉+ (b+ d) |01〉+ (a− c) |11〉+ (b− d) |10〉

)
(1.18)

Again, we can check with the |00〉 case, which in this formulation is a = 1, b = c = d = 0:

|ψ〉 =
1√
2

(
1 |00〉+ 0 |01〉+ 1 |11〉+ 0 |10〉

)
(1.19)

=
|00〉+ |11〉√

2
(1.20)
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2 Quantum circuits

Recall that each line in the diagram corresponds to a qubit, and when we write down a
circuit in matrix form, we are writing down how that circuit acts on the two-qubit basis
|00〉 , |01〉 , |10〉 , |11〉. Note that the basis states do not necessarily have to be in that order,
but make sure you are clear and careful about the order in which you write down your ma-
trix, as it will look slightly different depending on the ordering. Here I will stick with the
above ordering, since that’s what we’ve been using.

A Hadamard gate acts on a single qubit, and is represented in the |0〉 , |1〉 basis by:

H =
1√
2

(
1 1
1 −1

)
(2.1)

This will take |0〉 , |1〉 and give:

|0〉 =

(
1
0

)
→ 1√

2

(
1
1

)
=

1√
2

(
|0〉+ |1〉

)
(2.2)

|1〉 =

(
0
1

)
→ 1√

2

(
1
−1

)
=

1√
2

(
|0〉 − |1〉

)
(2.3)

Circuit 1: First, look at the case where it acts on qubit 1. If we want to be thorough in our
notation, we’re applying the operator H⊗1 on the two-qubit basis states |x1〉⊗ |x2〉. Recall
that the columns of a matrix correspond to the new vectors you get from the basis states
(column 1 is the vector you get as a result of acting the operator on basis state 1, etc.), so
we just need to see how this transformation affects the basis of the two-qubit states.

|00〉 = |0〉 ⊗ |0〉 → 1√
2

(|0〉+ |1〉)⊗ |0〉 =
1√
2

(
|00〉+ |10〉

)
(2.4)

|01〉 → 1√
2

(
|01〉+ |11〉

)
(2.5)

|10〉 → 1√
2

(
|00〉 − |10〉

)
(2.6)

|11〉 → 1√
2

(
|01〉 − |11〉

)
(2.7)

So the matrix representing this circuit is:

M1 =
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 (2.8)

This looks somewhat awkward, and the action is a bit clearer when written in |00〉 , |10〉 , |01〉 , |11〉
ordering since the Hadamard gate is acting on qubit 1 (leaving qubit 2 fixed). In that case
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it looks like:

M1 =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 (2.9)

Written this way, we can see that this is block diagonal and that there are two independent
subspaces that this operator acts on: |00〉 , |10〉 and |01〉 , |11〉. You might have intuitively
expected this based on the action of the Hadamard gate on a single qubit. Since this is block
diagonal, it is relatively straightforward to check1 that M †M = 1, so this is unitary.

Circuit 2: For the case where H acts on qubit 2, we can do the same analysis, now applying
1⊗H:

|00〉 → 1√
2

(
|00〉+ |01〉

)
(2.10)

|01〉 → 1√
2

(
|00〉 − |01〉

)
(2.11)

|10〉 → 1√
2

(
|10〉+ |11〉

)
(2.12)

|11〉 → 1√
2

(
|10〉 − |11〉

)
(2.13)

So the matrix is:

M2 =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 (2.14)

which is already nice and clear. There are two independent subspaces: |00〉 , |01〉 and
|10〉 , |11〉. Again, you can check that this is unitary.

1Each of the 2x2 sub-matrices is unitary, and is in fact just the Hadamard matrix, which is unitary
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Alternative approach: A shorter approach is to do a tensor product, if you are comfortable
with them, of the identity operator and the Hadamard matrix. For the case where H is
applied to qubit 1, we have:

M1 = H ⊗ 1 (2.15)

=
1√
2

(
1 1
1 −1

)
⊗
(

1 0
0 1

)
(2.16)

=
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 (2.17)

while for the case where we apply H to qubit 2,

M2 = 1⊗H (2.18)

=

(
1 0
0 1

)
⊗ 1√

2

(
1 1
1 −1

)
(2.19)

=
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 (2.20)
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3 Positive operators

(i) We want to show that any positive operator is Hermitian. To do so, take the complex
conjugate of the expectation value, noting that since the expectation value is just a complex
number, this is equal to the Hermitian conjugate. Since the expectation value is real, it is
equal to its complex conjugate.

(〈ψ|M |ψ〉)∗ =(〈ψ|M |ψ〉)† = 〈ψ|M †|ψ〉 (3.1)

⇒ 〈ψ|M †|ψ〉 = 〈ψ|M |ψ〉 (3.2)

〈ψ|M −M †|ψ〉 = 0 (3.3)

The only way 〈ψ|M −M †|ψ〉 = 0 for every |ψ〉 is if M − M † = 0, so M = M † and is
Hermitian.

It must be the case that the eigenvalues of M are real and non-negative. Since M is
Hermitian, we already know they are real. To see the non-negative part, note that 〈ψ|M |ψ〉
is non-negative for any state |ψ〉, including the eigenstates of M . If any of the eigenvalues
were negative, then we could choose |ψ〉 to be the eigenstate corresponding to that eigenvalue
and end up with a negative expectation value.

(ii) We want to show M †M is positive for any operator M . Notice that the expectation
value can be seen as the inner product of two states, 〈ψ|M † and M |ψ〉. Define |ψ′〉 ≡M |ψ〉.
Observe that

〈ψ|M † = (M |ψ〉)† = (|ψ′〉)† = 〈ψ′| (3.4)

Thus we can rewrite:

〈ψ|M †M |ψ〉 = 〈ψ′|ψ′〉 = | |ψ′〉 |2 (3.5)

The magnitude of a vector is real and greater than or equal to 0, so the operator M †M is
positive.
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4 Expectation values from density matrix

We want to show that:

Tr(M |ψ〉 〈ψ|) = 〈ψ|M |ψ〉

To do so, let’s choose a basis |ψi〉 for the vector space V , and write the trace in that basis.
Keep in mind that |ψ〉 =

∑
i ci |ψi〉 for some complex constants ci, and 〈ψ| =

∑
i c
∗
i 〈ψi|.

Tr(M |ψ〉 〈ψ|) =
∑
i

〈ψi|M |ψ〉 〈ψ|ψi〉 (4.1)

=
∑
i

〈ψi|M |ψ〉 c∗i (4.2)

=
∑
i

c∗i 〈ψi|M |ψ〉 (4.3)

= 〈ψ|M |ψ〉 (4.4)

In the first line, we used the definition of the trace in the |ψi〉 basis, and in the second and
fourth lines we used the expression for 〈ψ| in this basis.

Note: For a pure state, the density matrix is given by ρ = |ψ〉 〈ψ|. Thus, what we have
shown in this problem (at least for pure states) is that you can find the expectation value of
an operator M by Tr(Mρ). This actually also generalizes to mixed states, where you have
ρ =

∑
i pi |ψi〉 〈ψi|, where pi is the probability of being in state |ψi〉.
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