Problem Set 5

Physics 342

Due February 17

Some abbreviations: S - Shankar.

1. Let's introduce the epsilon symbol ϵ_{ijk} where i, j, k run over 1, 2, 3 or x, y, z. This is completely antisymmetric in i, j, k. Set $\epsilon_{123} = 1$ so $\epsilon_{213} = -1, \epsilon_{112} = 0$ etc. This tensor plays an important role in the study of angular momentum. Prove the two basic relations for the ϵ symbol, which we will use in lecture. Namely,

$$\epsilon_{iab}\epsilon_{icd} = \delta_{ac}\delta_{bd} - \delta_{ad}\delta_{bc}$$

and the Jacobi identity:

 $\epsilon_{ade}\epsilon_{bcd} + \epsilon_{bde}\epsilon_{cad} + \epsilon_{cde}\epsilon_{abd} = 0.$

Here repeated indices are summed over.

2. We defined the angular momentum operators $\vec{L} = \vec{r} \times \vec{p}$. Let's call them L_i with i = 1, 2, 3. For a rotationally invariant system, they generate a symmetry group. That means rotation 1, represented by some unitary U_1 , followed by rotation 2, represented by U_2 , should be some other rotation $U_2U_1 = U_3$ which is also a symmetry. The analogous statement for the Hermitian symmetry generators L_i is that the commutator of two symmetry generators should produce a sum of symmetry generators. Let's check this.

(i) Compute $[L_i, L_j]$ in terms of ϵ_{ijk} . This is the angular momentum algebra.

(ii) Now compute $[S_i, S_j]$ for the spin 1/2 generators $\vec{S} = \frac{\hbar}{2}\vec{\sigma}$.

(iii) Let's denote a finite rotation around some axis \hat{n} by $R_{\hat{n}}(\theta)$ Here \hat{n} is a unit vector pointing in some direction and $\theta \in [0, 2\pi)$. Show that any such rotation, which is an element of SO(3), can be obtained from the combination $R_3(\alpha)R_2(\beta)R_3(\gamma)$ for some angles (α, β, γ) where R_i denotes rotation around the i^{th} axis. What is the range of (α, β, γ) ?

(iv) Now take $R_{\hat{n}}^{(1/2)}(\theta) = e^{-\frac{i}{\hbar}\theta \hat{n}\cdot\vec{S}}$ using the generators of (ii). Compute the matrix $R_3^{(1/2)}(\alpha)R_2^{(1/2)}(\beta)R_3^{(1/2)}(\gamma)$ explicitly for this representation. We will explore this case more in the following question.

3. In discussing projective representations, we brought up the double cover of the rotation group SO(3) which is SU(2). At this point, you might be asking yourself: are SU(2) and SO(3) really different? You might also wonder: why do we care about the difference? To answer these questions, let us consider a map $R : SU(2) \to SO(3)$. We will use the Pauli matrices, σ^i , i = 1, 2, 3 to define the map. Take a 3-vector x^i and construct the combination: $X = \sum_i x^i \sigma^i$. This is a traceless Hermitian matrix for any vector \vec{x} . Act on X by an element $U \in SU(2)$ as follows:

$$X \to \tilde{X} = UXU^{\dagger}.$$
 (1)

- (i) Show that the result, \tilde{X} , is still a traceless Hermitian matrix.
- (ii) We might wonder whether there is a 3-vector \tilde{x}^i such that

$$\tilde{X} = \sum_{i=1}^{3} \tilde{x}^i \sigma^i, \tag{2}$$

and how this vector \tilde{x}^i is related to x^i . To understand the relation, show that both vectors have the same length. Because the vectors have the same length, they have to be related to one another by some 3×3 rotation matrix R(U) that depends on the choice of U. This is the map we want to explore. It defines what is called a "homomorphism" of groups, which means that

$$R(U_1U_2) = R(U_1)R(U_2).$$
(3)

(iii) Show that the kernel of the map R is \mathbb{Z}_2 . Conclude from this that $SO(3) = SU(2)/\mathbb{Z}_2$.

(iv) Recall that a spin 1/2 system has a two state Hilbert space with orthonormal basis vectors $|+\rangle$ and $|-\rangle$. The S_i operators of problem 2 (ii) generate rotations for the spin system. To see this consider $R_z^{(1/2)}(\phi) = e^{-iS_z\phi/\hbar}$. Conjugate S_x by this operator and see what results.

(v) Take a general ket $|\psi\rangle$ which you can expand in the $|\pm\rangle$ basis. Compute the action of $R_z^{(1/2)}(\phi)$ on this state. If you rotate by $\phi = 2\pi$, what happens to the state?

4. Let us consider the Hamiltonian

$$H = \frac{\vec{p}^2}{2m} - \frac{e^2}{r}$$

which describes a Coulomb interaction.

(i) Show that the Runge-Lenz vector

$$\vec{N} = \vec{p} \times \vec{L} - \frac{me^2}{r}\vec{r}$$

is conserved classically. Verify that $\vec{N} \cdot \vec{L} = 0$.

(ii) Show that in quantum mechanics, the vector \vec{N} satisfies the following commutation relations with the angular momentum generators

$$\frac{d\vec{N}}{dt} = \left[H, \vec{N}\right] = 0, \qquad \left[L^i, N^j\right] = i\hbar\epsilon^{ijk}N^k, \qquad \left[N^i, N^j\right] = i\hbar\epsilon^{ijk}(-2mH)L^k$$

where

$$\vec{N} = \frac{1}{2} \left(\vec{p} \times \vec{L} - \vec{L} \times \vec{p} \right) - \frac{me^2}{r} \vec{r}.$$