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1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider in 2012 marked a major

milestone for particle physics; the Higgs discovery completed the Standard Model (SM) of

particle physics, which has been a remarkably successful theory under experimental tests.

Prior to the discovery of the Higgs, however, the experimental measurements of non-zero

particle mass and the theoretical structure of the SM were in disagreement and required

some addition to the theory. The Higgs mechanism resolved this tension through the appli-

cation of spontaneous symmetry breaking, which does not explicitly break symmetries but

rather ‘hides’ them.

This paper reviews the role of spontaneous symmetry breaking (SSB) in the Standard Model,

both in experimentally-confirmed contexts and in proposed models designed to resolve some

outstanding issues with the SM. In Section 2, we give a brief review of how the Higgs

mechanism induces electroweak symmetry breaking (EWSB), then focus on the specifics of

the quark sector and the possible origins of neutrino mass. We then move on to grand

unified theories (GUT) in Section 3, emphasizing the specific representations of the SM

matter content in these gauge groups and the phenomenological considerations associated

with each group.

2 The Higgs mechanism

Because the Standard Model is built on the gauge group of SU(3)×SU(2)×U(1), the most

natural way to build the theory is with massless fields. In fact, mass terms for fermionic

1



fields explicitly break SU(2) symmetry:

Lmass ⊃ −mf ψ̄ψ = −mf

(
ψ̄RψL + ψ̄LψR

)
. (1)

Such terms are not invariant under SU(2), as ψR transforms as a singlet under SU(2) while

ψL transforms as part of an SU(2) doublet. Meanwhile, mass terms for the weak gauge

bosons also break this gauge symmetry:

Lmass ⊃
1

2
M2

AAµA
µ

→ 1

2
M2

A

(
Aµ −

1

e
∂µα

)(
Aµ − 1

e
∂µα

)
(2)

6= 1

2
M2

AAµA
µ

where we have chosen to illustrate the issue with the photon mass term due to its slightly

simpler transformation; the principle for the weak gauge bosons is the same. The fact that

mass terms explicitly break the SM gauge symmetry creates a tension between the theory,

which does not inherently allow mass terms, and experiment, which has measured non-

zero masses for the W± and Z gauge bosons as well as for the fermion content of the SM.

Spontaneous symmetry breaking via the Higgs mechanism introduces mass terms to the SM

theory without explicitly breaking the gauge symmetries. In this section, we will give a brief

overview of the Higgs mechanism breaking SU(2)L × U(1)Y to U(1)Q, then focus on the

specifics of the quark sector and the possible origins of neutrino mass.

2.1 Breaking of SU(2)× U(1)

Here we present a brief review of the mechanism through which the Higgs field breaks the

SU(2)L × U(1)Y group to U(1)Q. Until otherwise noted, the content contained in the fol-

lowing discussions is a combination of material from Refs. [1, 2].

A complex SU(2) doublet field is introduced with a kinetic term and potential of the form:

LHiggs = (DµΦ)†DµΦ− µ2Φ†Φ− λ(Φ†Φ)2. (3)

When µ2 < 0, Φ obtains a non-zero vacuum expectation value (vev) of v2 = −µ2
λ

, around
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which one may expand by

Φ(x) =
1√
2

(
0

v +H(x)

)
(4)

after applying a gauge transformation to the unitary gauge. The field H(x), which describes

variations from the vacuum, is the field associated with the SM Higgs boson. The kinetic

term of Φ provides masses to the weak gauge bosons:

(DµΦ)†DµΦ =

∣∣∣∣(∂µ − i

2
gτaW a

µ −
i

2
g′Bµ

)
Φ

∣∣∣∣2 (5)

=
1

2
∂µH∂µH +

1

8

(
g2(v +H)2|W 1

µ + iW 2
µ |2 + (v +H)2|gW 3

µ − g′Bµ|2
)
. (6)

We define the W±, Z, and A gauge bosons as

W± =
1√
2

(
W 1
µ ∓ iW 2

µ

)
Zµ =

1√
g2 + g′2

(
gW 3

µ − g′Bµ

)
Aµ =

1√
g2 + g′2

(
g′W 3

µ + gBµ

)
(7)

so that the weak gauge bosons obtain masses, while the photon is massless. In particular,

this feature of the photon arises from the fact that the vev is in the neutral component of the

SU(2) doublet Φ and therefore does not break EM charge symmetry. Because the photon

is the generator of U(1)Q and is defined as a sum of W 3
µ and Bµ, the EM charges of SM

particles are given by the matrix Q = T 3 + Y , where T 3 is the third generator of SU(2) in

the appropriate representation and Y is the hypercharge of the particles under U(1)Y .

2.2 The quark sector

The coupling of the Higgs doublet to quarks is given by the interaction terms

LH,quark = −
√

2(λdQ̄LΦdR + λuQ̄LΦ̃uR + h.c.) (8)

where Φ̃ ≡ iτ 2Φ† has hypercharge -1, as required to make the second term hypercharge-

neutral. The presence of iτ 2 causes Φ̃ to transform under the fundamental representation of

SU(2), which is necessary as Q̄L transforms under the anti-fundamental representation and

uR transforms as a singlet. Expanding about the vacuum, Φ = 1√
2

(
0 v +H

)T
, gives mass
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terms of the form

LH,quark = −λd
(
ūL d̄L

)( 0

v +H

)
dR − λu

(
ūL d̄L

)(v +H

0

)
uR − h.c.

= −λd(v +H)d̄LdR − λu(v +H)ūLuR − h.c.

= −vλdd̄LdR − vλuūLuR − h.c.+ (interaction terms). (9)

The matrices λd,u are not necessarily diagonal, and must therefore be diagonalized in order

to identify the quark masses and mass eigenstates. We write the λd,u in terms of diagonal

matrices as

λd = UdΛdS
†
d λu = UuΛuS

†
u. (10)

With this diagonalization, the quark fields transform as

uL → UuuL uR → SuuR (11)

dL → UddL dR → SddR (12)

where U and S are unitary 3x3 matrices. Putting these replacements into the Lagrangian,

the mass terms are now diagonalized:

LH,quark ⊃ −v
(
d̄LU

†
dUdΛdS

†
dSdd

j
R + ūLU

†
uUuΛS

†
uSuuR + h.c.

)
= −v

(
d̄LΛddR + ūLΛuuR

)
. (13)

Since the matrices Λd,u are diagonal, we may define mi
u,d = Λii

u,d, where i indicates the

generation index, and write (with sum over i implicit)

Lquark,mass = −v
(
mi
dd̄
i
Ld

i
R +mi

uū
i
Lu

i
R + h.c.

)
(14)

We have now obtained mass terms for the quarks in terms of the mass eigenstates. However,

unlike in the lepton sector, rewriting the rest of the Lagrangian in terms of the mass eigen-

states does not leave the other terms invariant. In particular, we can see this in the charged
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weak current J±, which couples to W±:

1

2
(Jµ,+ + Jµ,−) = ūLγ

µdL + d̄Lγ
µuL

= ūLU
†
uγ

µUddL + d̄LU
†
dγ

µUuuL

= ūiLγ
µ(U †uUd)

ijdjL + d̄iLγ
µ(U †dUu)

ijujL (15)

≡ ūiLγ
µV ij

CKMd
j
L + d̄iLγ

µ(V †CKM)ijujL.

The mixing matrix VCKM is known as the Cabibbo-Kobayashi-Maskawa matrix, and can be

written in terms of three angles (θ1, θ2, θ3) and a CP-violating phase δ.

We thusly see that the diagonalization of the mass matrices in terms of mass eigenstates

introduces couplings between different quark generations within the weak sector. This indi-

cates that the weak eigenstates are combinations of the mass eigenstates. Thus, the charged

weak current may mediate flavor changing interactions in the quark sector. This contrasts

with the neutral weak currents, which do not introduce flavor-changing interactions in either

the quark or lepton sector, as well as with the Higgs-quark couplings, which are diagonalized

along with the mass terms.

2.3 Neutrino masses

Within the lepton sector, the Higgs interaction terms are given by

LH,lept = −
√

2
(
λlL̄lΦRl + R̄lΦ

†Ll
)

= −λl

((
ν̄l l̄L

)( 0

v +H

)
lR + λl l̄R

(
0 v +H

)(νl
lL

))
(16)

= −λl
(
vl̄LlR + vl̄RlL

)
+ (interaction terms)

= −vλl l̄l + (interaction terms)

where the subscript l denotes the particular lepton generation (e, µ, τ) and we have defined

Ll =
(
νl lL

)T
and Rl = lR. The Higgs therefore gives mass to the electron, muon, and

tau leptons, but leaves the neutrinos massless. We note that in this case, the charged weak

current does not mediate inter-generational mixing, as the massless neutrino eigenstates may

be defined by their coupling to the relevant partner lepton eigenstates. However, neutrinos

are known to have mass due to neutrino oscillations, which indicates that the mass and flavor

neutrino eigenstates are different.
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The mechanism through which neutrinos receive mass is still unknown; here we will review

the two primary scenarios. In the first case, neutrinos are Dirac fermions which have a

right-handed counterpart and a mass term similar to that of up-type quarks. In the second

case, neutrinos are Majorana fermions with Majorana mass terms. In both scenarios, the

neutrinos may obtain their mass through the Higgs mechanism.

2.3.1 Dirac neutrinos

The first possibility is that the neutrino is a Dirac fermion, similarly to the other fermions in

the SM. In this case, there will be an independent right-handed component which we denote

as N i ≡ νiR. Then we can write a neutrino mass term similarly to the up-type quark mass

terms:

Lmass,ν = λijν L̄
iΦ̃N j + h.c. (17)

As before, diagonalizing yields a mixing matrix amongst the generations and mass terms of

the form

Lmass,ν = mi
ν(ν̄

i
Lν

i
R + ν̄iRν

i
L). (18)

Although this method successfully introduces neutrino masses to the SM Lagrangian, the

Yukawa couplings alone (along with the fixed scale v) are responsible for defining the mass

scale of the neutrinos. In this case, the neutrino Yukawa couplings must be on the order

of O(10−12) to reproduce neutrino masses of O(10−1) eV. These values of the Yukawa cou-

plings are many orders of magnitude smaller than those of the other fermionic SM particles.

Additionally, the most general Lagrangian can contain a Majorana mass term for the right-

handed neutrinos, as they transform as singlets under the entire SU(3)×SU(2)×U(1) gauge

group. These two considerations help motivate an analysis of the Majorana case.

2.3.2 Majorana neutrinos

Here we present material contained in Ref [3]; some of the development of the seesaw models

may be found in Refs. [4, 5]. Because the neutrino is electrically neutral, it is possible that

the neutrino is a Majorana fermion, where the neutrino is its own antiparticle. We may

check that the neutrino is electrically neutral in the SM after EWSB by calculating the

lepton charge matrix Q which we derived previously. In the case of a left-handed lepton
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doublet, the relevant SU(2) generator T 3 is τ 3 of the fundamental representation, 1
2
σ3:

QL = (τ 3 + Y )L =

(
1
2
− 1

2
0

0 −1
2
− 1

2

)(
νL

lL

)
=

(
0 0

0 −1

)(
νL

lL

)
(19)

where we have identified that the hypercharge must be Y = −1/2 in order to obtain the cor-

rect charge for the electron, muon, and tau. Thus the neutrino is indeed electrically neutral

under the definition of Q obtained through the Higgs mechanism.

For a particle to be a Majorana fermion, the operator which creates and annihilates the

particle must be the same. In this case, the charge-conjugate field νc(x) = Cν̄T (x) is equal

to the original field ν(x), and therefore the right-handed component is not an independent

component of the field but rather the charge-conjugate of the left-handed component: νR =

νcL. Majorana mass terms are therefore given by

Lmass,ν = −1

2
mν (ν̄cLνL + ν̄Lν

c
L) . (20)

As before, such mass terms explicitly break SU(2) symmetry. One may obtain terms of

this form through the Higgs mechanism by including the previous Higgs-neutrino interaction

term as well as introducing Majorana mass terms for heavy right-handed neutrinos of the

form

LH,lept ⊃ −λiαν L̄iΦ̃Nα − 1

2
MαβN̄α(Nβ)c + h.c. (21)

The generation indices on the left-handed and right-handed neutrinos are differentiated to

indicate that the number of right-handed neutrino generations has not been specified, and

may not be equal to 3. With these terms, the diagonalization of the resulting mass matrix

after EWSB leads to Majorana mass terms for the left-handed neutrino. Explicitly, EWSB

yields a Dirac mass matrix miα
D , which combines with the Majorana mass matrix Mαβ to

give

LH,lept ⊃ −
1

2

(
(ν̄iL)c N̄α

)( 0ij (mT
D)iβ

mαj
D Mαβ

)(
νjL

(Nβ)c

)
(22)

For M � mD, this matrix gives approximate Majorana mass terms for the left-handed

neutrinos of the form

mij ≈ −(mT
D)iα(M−1)αβmβj

D (23)
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and the mass matrix becomes approximately block diagonal, with the heavy right-handed

neutrinos effectively decoupling from the light left-handed neutrinos.

An advantage of the Majorana case is that the presence of the heavy right-handed Majorana

neutrinos introduces a seesaw mechanism, in which the left-handed neutrino masses are

suppressed by M−1 as seen in Eq. (23). As such, the small left-handed neutrino masses may

be achieved without very small Yukawa couplings if the right-handed neutrinos are taken

to be massive enough. Seesaw models of this type can also provide a successful mechanism

for obtaining the baryon-antibaryon asymmetry as well as induce a negative Higgs mass

through loop diagrams mediated by the right-handed neutrinos (for an appropriate choice

of renormalization scale); however, the details of these mechanisms are outside the scope of

this paper.

3 Unified theories

Although the only confirmed application of spontaneous symmetry breaking in the Standard

Model is the generation of particle mass through the Higgs mechanism, SSB may also be used

in other contexts. In this section, we review how grand unified theories (GUT), in which the

theory is described by a single gauge group at high energies, may be broken down to the SM

gauge group through spontaneous symmetry breaking. Although there are a number of pos-

sible GUT-scale groups, experimental constraints and required particle content place strong

limits on many of them. Here we will review the gauge groups SU(5) and SO(10),nand

describe how the SM may be realized in these groups.

In order to be broken to the SM theory, the unified gauge group must contain SU(3) ×
SU(2)×U(1). The size of the group and its particular representations determine whether it

is able to produce the currently-known SM particle content alone or whether it will inherently

include further particle content. The heavy right-handed neutrinos discussed in the previous

section may be included as a singlet of the unified theory if the irreducible representations

do not naturally include such a particle, and naturally appear in certain GUT groups within

the irreps which describe the SM fermionic content.

To provide some relevant context for the discussion of the choice of representations of the

unified gauge groups into which we place the SM particle fields, we review the transformation

of the SM fields under SU(3) × SU(2) × U(1). In particular, the left-handed quark fields

transform as triplets under SU(3) and doublets under SU(2) with Y = 1/6, which we indicate
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compactly by (3, 2)1/6, while the right-handed quarks are triplets under SU(3) and singlets

under SU(2), (3̄, 1)1/3,−2/3. The leptons are all singlets under SU(3), and the left-handed

leptons are doublets under SU(2), (1, 2)−1/2, while the right-handed electron, muon, and tau

are singlets under SU(2), (1, 1)1. The discussion in the following sections are a summary of

material in Refs. [6]-[9]

3.1 SU(5)

The first proposed unified gauge group was SU(5), originally introduced by Georgi and

Glashow [6]. This is the smallest possible gauge group which contains the SM gauge group

and provides the correct particle content for the SM. The particle content of the SM is

contained in the irreducible representations of SU(5) as:

5̄→ (3̄, 1) 1
3
⊕ (1, 2)− 1

2
(24)

10→ (3, 2) 1
6
⊕ (3̄, 1)− 2

3
⊕ (1, 1)1 (25)

from which we see that the right-handed down-type quarks and the left-handed leptons

are contained in the 5̄ representation of SU(5), while the left-handed quarks, right-handed

up-type quarks, and right-handed leptons are contained in the 10 representation. We can

therefore describe one full generation of the fermionic SM particles in the combination of

irreducible representations 5̄ ⊕ 10. One may also include the right-handed neutrino as a

singlet, 1→ (1, 1)0.

There are two instances of spontaneous symmetry breaking required to take SU(5) to the

SU(3)×U(1)Q SM group. The SU(5) gauge group may first be broken to SU(3)×SU(2)×
U(1) using a scalar with a vev proportional to

Φ0 =


2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 −3 0

0 0 0 0 −3

 (26)

where Φ transforms under the adjoint representation 24 of SU(5). In this case, the vacuum

leaves the SU(3)× SU(2)× U(1) generators unbroken. The unbroken SM gauge symmetry

is then spontaneously broken to SU(3)× U(1)Q by a Higgs scalar, which is placed into a 5

representation of SU(5).
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The SU(5) model runs into some phenomenological issues with regard to proton decay.

Firstly, the massive gauge bosons obtained from spontaneously breaking SU(5) to the SM

gauge group can mediate proton decay through quark-lepton couplings, as both quarks and

leptons now live inside the same irreps of SU(5). An estimate of the proton lifetime obtained

after including the decays mediated by the heavy gauge bosons is given by

τproton ≈ O(104)
M4

m5
p

(27)

where M is the mass of the heavy gauge bosons. This estimate places a bound on the mass

scale M of approximately M > 2×1015 GeV, which also gives a lower limit on the unification

scale.

Additionally, the SM Higgs is an SU(2) doublet and therefore is typically included in a 5

representation of SU(5), as noted above. This representation will also include an SU(3)

triplet, scalar lepto-quarks, which can mediate proton decay. Ensuring that this triplet does

not induce a rate of proton decay in conflict with experiment requires it to be very mas-

sive. Obtaining a Higgs mass scale on the order of the weak scale as well as a heavy triplet

from the same representation requires a high degree of fine-tuning; this issue is known as

the doublet-triplet problem. Due to these considerations, the SU(5) model requires heavy

modifications or fine-tuning to remain viable.

One well-known extension of the basic SU(5) model is the supersymmetric SU(5) model

[10], as minimal SUSY successfully achieves gauge-coupling unification at a scale of 1016

GeV. This model can provide some resolution to the doublet-triplet problem; however, the

supersymmetric theory also runs into its own issues with proton decay, this time enhanced

by Higgsinos.

3.2 SO(10)

While the SU(5) theory provides an appealing structure through which we can describe the

SM content in a single gauge group, the fermionic content is contained in two different irreps

of the SU(5) group. The group SO(10), on the other hand, can describe all of the fermionic

fields in a single representation. In particular, the spinorial 16 representation contains all

of the SM fermion fields of a single generation; this also includes a right-handed neutrino as

the 16th field. This structure therefore predicts one right-handed neutrino N i for each of
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the SM generations.

There are multiple possible breaking patterns for SO(10) to reduce to the SM gauge group.

The spinoral rep 16 contains the SU(5) rep 5̄ ⊕ 10, so one particular example is breaking

to SU(5)×U(1). Note that because SO(10) is a rank 5 group, while SU(5) is rank 4, there

is an additional generator and therefore an additional gauge boson. The Higgs is placed in

a 10 rep of SO(10); the single Yukawa coupling allowed by SO(10) is two fermion-matter

16-plets coupled to the Higgs 10. With this structure, the resulting masses do not reproduce

the experimentally-measured values. Introducing further Higgs multiplets can modify the

theory to accurately reproduce fermionic masses; 126 Higgs multiplets have been proposed

as a solution. However, such Higgs multiplets appear unnatural.

The unbroken SO(10) theory also does not allow a Majorana mass term for the right-handed

neutrino, as it does not transform as a singlet under SO(10). In this case, the mass scale of

the right-handed neutrino might be expected to be near the scale at which the unified group

is spontaneously broken; this scale is generally expected to be higher than the mass scale at

which the seesaw mechanism successfully produces reasonable values for the masses of the

left-handed neutrinos. The model can, however, be modified to give lower masses for the N i.

4 Conclusion

In this paper, we have reviewed the applications of spontaneous symmetry breaking to the

Standard Model. In particular, we have first focused on the Higgs mechanism and its sub-

tleties in the quark sector, as well as possible realizations of neutrino mass mechanisms. The

misalignment of quark mass eigenstates and weak eigenstates have been shown to introduce

quark flavor-changing interactions through the charged weak current. The two possible cases

for anti-neutrinos have been introduced, and we have reviewed proposed mass mechanisms in

each case. While the Dirac neutrino terms may be easily introduced with a structure similar

to the quark sector, the Dirac case has issues with the scale of the Yukawa couplings. Mean-

while, the Majorana case provides interesting solutions to additional problems in particle

physics. In particular, the Majorana neutrino case can naturally explain the very small left-

handed neutrino masses, provide a mechanism for baryon-antibaryon asymmetry through

leptogenesis, and induce a negative Higgs mass through loop renormalizations. While some

form of the Higgs mechanism has been confirmed by the discovery of the SM Higgs at the

LHC, there are a number of interesting aspects of the mechanism which are still yet to be
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determined. The specifics of the Higgs sector may provide some answers or insight into other

outstanding problems.

The second part of this paper has focused on the use of spontaneous symmetry breaking

in recovering the SM gauge group from unified gauge groups at higher energy scales. We

have introduced the proposed groups SU(5) and SO(10), and described the representations

within which one may place the matter content of the SM. The issues of proton decay have

been found to place strong limits on the SU(5) model; in particular, the doublet-triplet

problem introduces a significant issue for the non-SUSY SU(5) model. The introduction of

supersymmetry can provide some resolution to this issue, but the SUSY model runs into its

own issues with over-predicting the rate of proton decay. Within the SO(10) framework,

we can place all matter content into a single representation, which provides an appealing

unification; however, the specifics of the Higgs and its representation under SO(10) raises

its own problems.

Spontaneous symmetry breaking provides a rich framework through which one can approach

many problems in high energy physics. Here we have seen here two very different motiva-

tions for introducing spontaneous symmetry breaking, and have encountered an elegant (if

occasionally phenomenologically-troubled) solution in both cases. It seems likely that the

SM Higgs mechanism will not turn out to be the only case in which we see an implementation

of SSB in particle physics.
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