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Abstract: We explore the connection between Chern Simons theory on a manifold and
rational conformal field theories (CFTs) defined on the boundary of the manifold, by map-
ping the degrees of freedom of the two theories and defining the Hilbert space of the bulk
Chern Simons theory through this map. The correspondence holds both with and without
sources in the bulk on the manifold, although the existence of sources in the bulk modifies
the dual boundary CFT and hence also the Hilbert space.



Contents

1 Introduction 1

2 Wess Zumino Witten Models 2
2.1 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Representations of the Kac-Moody Algebra . . . . . . . . . . . . . . . . . . 6

3 Canonical Quantization of Chern Simons Theory 8
3.1 Σ = D, a Disk Centered at the Origin . . . . . . . . . . . . . . . . . . . . . 8
3.2 Adding Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Adding more Boundaries: The Annulus without Sources . . . . . . . . . . . 11

4 Discussion 11

A Effective Action for Σ = D 12

B Effective Action for Σ = D with a Source 13

1 Introduction

Naively, the dynamics of Chern Simons theory on an arbitrary manifold M seem to be
trivial, since the action of the theory

S = k

4π

∫
M

Tr
(
AdA+ 2

3A
3
)
, (1.1)

is purely topological, implying that the stress tensor vanishes, and so does the Hamiltonian.
However, the quantization of the theory turns out to be subtle on manifolds with boundary
and on nontrivial compact manifolds, wherein dynamics can be generated from pure gauge
degrees of freedom residing on the boundary of the manifold and/or those with nontrivial
holonomies. In this review, we shall focus on the first case of manifolds with boundaries
and explore how nontrivial dynamics are generated by ‘large gauge transformations’, i.e.
gauge transformations that don’t die down to unity on the boundary.

In the cases where M = Σ×R, where Σ is a two dimensional manifold with boundary
∂Σ 6= ∅, one can interpret the real line as time and canonically quantize the theory on
a spatial slice Σ. Canonical quantization of theories with constraints can be done in one
of two ways, by either constraining the theory first and then quantizing or by imposing
the constraints as operator equations on the Hilbert space of the theory. Both approaches
reveal close connections between Chern Simons theory and rational CFTs known as Wess-
Zumino-Witten (WZW) models. The first approach reveals a direct equivalence between
the actions of the two theories, mapping the degrees of freedom on both sides. The second
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approach demonstrates an equivalence of the Hilbert space of Chern Simons theory and
the space of conformal blocks of WZW models.

Chern Simons theory was originally developed by Witten in his seminal work on the
Jones polynomial in knot theory[1]. The arguments of this paper were subsequently made
concrete in [2–5]. The intimate connection between Chern Simons theory and rational CFT
was also explored in [1, 2, 6].

This review is organized as follows. In section 1, we begin with a historic introduction
to WZW models, while section 2 is devoted to a few examples of canonical quantization of
Chern Simons theory, where we will explicitly work out the statements above.

2 Wess Zumino Witten Models

WZW models were originally introduced by Witten in the context of non-abelian bosoniza-
tion of fermions in two dimensions[7]. Free massless fermions in two dimensions are confor-
mally invariant with two conserved currents (the chiral components of the vector current).
Hence, the corresponding bosonic theory must also have the same two properties. Since N
Dirac fermions have a U(N)L × U(N)R global symmetry, it is natural to express them in
terms of a bosonic field g that takes values in U(N), with the global symmetry acting on
g by g → ΩgΩ̃−1 for Ω, Ω̃ ∈ U(N). Now, observe that if we write

J+ = i

2πg
−1∂+g, J− = − i

2π (∂−g) g−1, (2.1)

in lightcone coordinates, separate conservation equations for both currents, ∂−J+ = 0 =
∂+J− are not only compatible with each other, but also equivalent1.

Next, we ask the question: what action would result in the currents above? The
obvious guess would be the non-linear sigma model

S =
∫ 1

4λ2 Tr
(
∂µg∂

µg−1
)
. (2.2)

However, it is well known that the non-linear sigma model (2.2) is asymptotically free with
the interactions getting stronger in the IR. Hence, it can’t be dual to a conformal field
theory. Secondly, it also results in fewer conserved currents, namely

∂µ
(
g−1∂µg

)
= 0. (2.3)

It turns out that the non-linear sigma model can be modified in order to obtain a confor-
mally invariant theory with the correct conserved currents as follows. Consider, instead
of SU(N), an arbitrary symmetry group G such that the bosonic field g now takes values
in G2. Next, pick a manifold B such that its boundary ∂B is the compactification of our

1The expressions (2.1) are obtained from a generalization of the corresponding expressions in the abelian
case [8, 9]. In the non-abelian case, however, there is an ordering ambiguity that is resolved by picking the
ordering in the above expressions.

2The dual free massless fermions will now take values in a G multiplet.
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original spacetime. Every map g : ∂B → G can be extended into a map g̃ : B → G, and
we can construct the Wess-Zumino term

Γ = 1
24π

∫
B
d3y εαβγ Tr

(
g̃−1∂αg̃g̃

−1∂β g̃g̃
−1∂γ g̃

)
. (2.4)

The extension g̃ is not unique, and it can be shown that consequently the Wess-Zumino
term is well defined modulo Γ→ Γ + 2π. It can also be shown that the integral (2.4) can
be written as an integral over spacetime ∂B, with the explicit expression depending on the
group G. Hence, we can consider the action

S = 1
4λ2

∫
d2x Tr ∂µg∂µg−1 + kΓ′ (2.5)

with k ∈ Z, so that the path integral is well defined. This is the Wess-Zumino-Witten
model. Working out the equations of motion results in the expression( 1

2λ2 + k

8π

)
∂−(g−1∂+g) +

( 1
2λ2 −

k

8π

)
∂+(g−1∂−g) = 0. (2.6)

We see that at λ2 = |4π/k|, we obtain the desired conserved currents (or their parity
conjugates). Note that at this value of the coupling constant, the theory is invariant under
the transformation

g → Ω(x+)gΩ̃(x−), (2.7)

i.e., we have promoted the global G × G symmetry to a gauge symmetry. It can also be
shown that the WZW model is conformally invariant whenever λ2 = |4π/k|, by showing
that the beta function vanishes.

Note that the general solution to the conservation equations is g(x+, x−) = A(x−)B(x+)
for k > 0, which implies that left and right moving degrees of freedom decouple, exactly as
in the case of free fermions, leading to the conjecture that WZW models are dual to free
fermions.

2.1 Quantization

Quantizing the theory amounts to computing the Poisson brackets of the degrees of freedom
(in this case, the conserved currents) and promoting them to commutation relations. The
Hilbert space then lies in a representation of the current algebra3.

We work in light-cone coordinates by treating σ = x− as space and τ = x+ as time.
The action then becomes first order in time derivatives. However, this procedure fails to
give the Poisson brackets of operators containing τ derivatives, since any initial data on
τ = 0 may not be able to completely predict all degrees of freedom in the future, such as
the left-moving degrees of freedom on a τ = constant frame. In order to obtain the full
current algebra, we must also obtain the commutation relations of the left-moving degrees
of freedom by treating x− as time and x+ as space.

3Since the symmetry is now a gauge symmetry, the Hilbert space is not required to be a singlet under
gauge transformations.
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The action in light cone coordinates is given by

S = k

16π

∫
dσdτ Tr ∂τg∂σg−1 + kΓ, (2.8)

where Γ is also first order in time derivatives. Note that this action is not chirally invariant,
but since it only accounts for the right-miving degrees of freedom, we don’t expect it to
preserve chirality. The theory (2.8) on its own is known as the Chiral Wess-Zumino-Witten
(CWZW) model, and we’ll encounter it later in the next section.

Note that (2.8) is already in Hamiltonian form, since it is first order in time derivatives.
This makes it difficult to split the degrees of freedom into coordinates and momenta and
we must use alternate methods to compute Poisson brackets. For a theory with dynamical
variables φi and an action of the form

S =
∫
dtAi(φ)dφ

i

dt
, (2.9)

an infinitesimal change in variables φi → φi + δφi results in a change in the action of the
form

δS =
∫
dt

(
∂Ai
∂φj

δφj
dφi

dt
+Ai

d

dt
δφi
)
,

=
∫
dt

(
∂Aj
∂φi
− ∂Ai
∂φj

)
δφi

dφj

dt
,

=
∫
dt Fijδφ

idφ
j

dt
.

(2.10)

Define F jk as the inverse of the matrix Fij4. The Poisson bracket of two functions X and
Y on phase space is then given by

[X,Y ]PB = F ij
∂X

∂φi
∂Y

∂φj
. (2.11)

Varying the action (2.8) gives the equation

δS = k

4π

∫
dσdτ Tr g−1δg

∂

∂σ

(
g−1dg

dt

)
. (2.12)

In order to compute the Poisson brackets, it is not necessary to choose coordinates φi on
the phase space. All we need to do is pick a basis for the tangent vectors to the phase
space, from which the matrices Fij and F jk can be constructed. We will work with the
basis of matrices g−1δg(σ), in which F acts on both the Lie algebra index of g−1δg(σ) and
on σ. In this basis, we identify the matrix F from (2.12) as

F = 1⊗ k

4π
∂

∂σ
, (2.13)

4The matrix Fij is the symplectic form on the phase space of the theory
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with ‘1’ acting on the Lie algebra index, and (k/4π)∂σ acting on the the σ ‘index’. The
inverse of F is then given by

F−1 = 1⊗ 4π
k

(
∂

∂σ

)−1
. (2.14)

Let us consider the Poisson brackets of X = TrA∂σgg−1(σ) and Y = TrB∂σ′gg−1(σ′)
where the matrices A and B are generators of the group G. We first compute

δXδY = ∂X

∂φi
∂Y

∂φj
δφiδφj , (2.15)

and then replace δφiδφj by F ij to obtain the Poisson bracket of X and Y . We have

δX = TrA∂σ(δg)g−1 − TrA∂σgg−1δgg−1,

= Tr g−1Ag∂σ
(
g−1δg

)
.

(2.16)

Similarly, we can evaluate δY to obtain

δXδY = Tr g−1(σ)Ag(σ)∂σ
(
g−1δg(σ)

)
· Tr g−1(σ′)Bg(σ′)∂σ′

(
g−1δg(σ′)

)
. (2.17)

We have chosen the basis vectors of the cotangent space (g−1δg(σ))a and (g−1δg(σ′))b.
Hence, we must replace (g−1δg(σ))a(g−1δg(σ′))b by δab(4π/k)θ(σ, σ′), where θ(σ, σ′) is an
inverse of ∂σ. This amounts in replacing ∂σ(g−1δg(σ))a · ∂σ′(g−1δg(σ′))b by δab(4π/k)∂σ ·
∂σ′θ(σ, σ′) = δab(4π/k)δ′(σ − σ′), resulting in the Poisson bracket

[
TrAJ−(σ),TrBJ−(σ′)

]
PB = 4π

k
δ′(σ − σ′) Tr g−1(σ)Ag(σ)g−1(σ′)Bg(σ′),

= 4π
k
δ(σ − σ′) Tr[A,B]∂σg−1 + 4π

k
δ′(σ − σ′) TrAB.

(2.18)

Rescaling the current as J− = (k/2π)∂σg−1 and translating the Poisson brackets to
canonical commutation relations, we obtain the current algebra for the WZW model

[TrAJ−(x),TrBJ−(y)] = 2iδ(x− y) Tr[A,B]J−(x) + k
i

π
δ′(x− y) TrAB,

[TrAJ+(x),TrBJ+(y)] = 2iδ(x− y) Tr[A,B]J+(x) + k
i

π
δ′(x− y) TrAB,

[J−, J+] = 0,

(2.19)

with the second equation in (2.19) obtained similarly by reversing the ‘time’ and ‘space’
coordinates.

(2.19) is known as (two copies of) the Kac-Moody algebra. Another indicator of the
fact that k can take only integer values is that the Kac-Moody algebra has well behaved
unitary representations only when k is an integer.

In two dimensional conformal field theory, it turns out to be convenient to use complex
coordinates z = x0 + ix1 and z̄ = x0 − ix1 instead of light cone coordinates. In these
coordinates, it is a general property of CFTs that the currents factorize into holomorphic
and antiholomorphic parts J(z) and J̄(z̄). The holomorphic and antiholomorphic currents
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are expressed as linear combinations of the generators of G as J(z) = Ja(z)T a and J̄(z̄) =
J̄a(z̄)T a. The coefficients in this basis can then be expanded in a Laurent series as

Ja(z) =
∑

z−n−1Jan,

J̄a(z̄) =
∑

z̄−n−1J̄an.
(2.20)

These relations can be inverted to give

Jan = 1
2πi

∮
dz znJa(z),

J̄an = 1
2πi

∮
dz̄ z̄nJ̄a(z̄).

(2.21)

The commutation relations of the modes of the currents are then given by[
Jan, J

b
m

]
=
∑
c

ifabc J
c
n+m + knδabδn+m,0,[

J̄an, J̄
b
m

]
=
∑
c

ifabc J̄
c
n+m + knδabδn+m,0,[

Jan, J̄
b
m

]
= 0.

(2.22)

2.2 Representations of the Kac-Moody Algebra

The abstract way of defining the Laurent modes of the conserved currents is to take the
tensor product of the simple Lie algebra g corresponding to a simple Lie group G and
the algebra of Laurent polynomials in some variable z[10]. This algebra is generated by
elements of them form

Jan = Ja ⊗ zn∂z. (2.23)

Equation (2.21) gives an explicit realization of this tensor product. The Kac-Moody algebra
is the central extension of the algebra of the modes (2.23).

We construct the Laurent modes of the Cartan subalgebra and the ladder operators
{H i, Eα} of g by defining

H i
n = H i ⊗ zn∂z,

Eαn = Eα ⊗ zn∂z.
(2.24)

The commutation relations of these elements are given by[
H i
n, H

i
m

]
= knδijδn+m,0,[

H i
n, E

α
m

]
= αiEαn+m,[

Eαn , E
β
m

]
= 2
α · α

(α ·Hn+m + knδn+m,0) if α = −β,

= NαβEα+β
n+m if α+ β ∈ ∆,

= 0 otherwise,

(2.25)

where ∆ is the set of all roots of g, and Nαβ is some normalization.
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In order to distinguish the operators with different values of n, we introduce a grading
operator L0 which, under a commutator, pulls out the sum of n-values from a string of
operators [

L0, J
a
nJ

b
m · · ·

]
= −(n+m+ · · · )

(
JanJ

b
m · · ·

)
. (2.26)

The Cartan subalgebra is the set of operators{
H1

0 , · · · , Hr
0 , k, L0

}
. (2.27)

Operators with positive values of n will be considered as raising operators, while those
with negative values will be considered as lowering operators. Ladder operators with n = 0
corresponding to a positive root will be added to the set of raising operators and those
corresponding to a negative root will be added to the set of lowering operators.

As in the case of simple Lie algebras, we begin with a highest weight state |λ〉, which
is a simultaneous eigenstate of the Cartan subalgebra. Conventionally, we choose the L0
eigenvalue on the highest weight state to be 0. The highest weight state is annihilated by
all raising operators.

Eα0 |λ〉 = E±αn |λ〉 = H i
n |λ〉 = 0, n > 0, α > 0. (2.28)

The remaining states in the representation are obtained by action of the the lowering
operators on |λ〉. The set of states generated by this procedure is called a Verma module
Vλ. We will often abuse notation and label the Verma module Vλ by the highest weight λ.
The grade or level of a state is defined to be its L0 eigenvalue. The set of states at a level
N is spanned by a basis which contains elements of the form

Eα1
−k1

Eα2
−k2
· · · |λ〉 , ki ≥ 0,

∑
ki = N, (2.29)

or alternately
Ja1
−k1

Ja2
−k2
· · · |λ〉 , ki ≥ 0,

∑
ki = N. (2.30)

Unlike simple Lie algebras, this procedure does not result in negative norm states. Hence,
the Verma module is infinite dimensional. The highest weight, however, does get restricted
to discrete values through the inequality

k ≥ (λ, θ), k ∈ Z+, (2.31)

where (λ, θ) is the inner product of the highest weight λ of the given representation and
the highest weight θ of the adjoint representation5 (also called the highest root). It is a
property of simple Lie algebras and Kac-Moody algebras that the inner product of weights
with roots must be an integer. This gives a finite set of possible values of λ for a fixed k.

For k = 1 there can only be one highest weight and hence the representation is es-
sentially unique. This representation is known as the basic representation. For general
values of k, the representations obtained are tensor products of the basic representation
with different symmetry and antisymmetry conditions. The representations obtained in
this manner are called integrable representations.

5Recall that in the adjoint representation, the elements of the Lie algebra act upon themselves through
the Lie bracket, i.e., T1 |T2〉 = |[T1, T2]〉. The roots of a Lie algebra are the weights of the adjoint represen-
tation.
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3 Canonical Quantization of Chern Simons Theory

Equipped with the quantization of WZW models, we are now ready to tackle the canonical
quantization of Chern Simons theory. In the rest of this section we will closely follow the
procedure outlined in [2].

We begin by considering suitable boundary conditions for the action

S = k

4π

∫
M

Tr
(
AdA+ 2

3A
3
)
, (3.1)

6where we have suppressed the wedge products between differential forms for convenience.
The variation of the action results in

δS = − k

4π

∫
∂M

Tr (AδA)− k

2π

∫
M

Tr (FδA) . (3.2)

For the equations of motion to be local, the boundary term in (3.2) must vanish. Hence we
set one of the components of the gauge connection A along an arbitrary boundary direction
to be zero. For manifolds of the form M = Σ × R, we interpret R as time and set the
boundary conditions A0 = 0 on ∂Σ. The symmetry of this theory can be split up into
two subsets, transformations that die down to unity on ∂Σ and transformations that don’t
(these have to be time independent on the boundary to be compatible with the boundary
condition). Transformations that are unity on the boundary form the gauge symmetry
while the rest must be considered global. Decomposing the derivatives and the gauge field
into time and space components as d = dt∂/∂t+ d̃ and A = A0 + Ã results in the action

S = − k

4π

∫
M

Tr
(
Ã
∂Ã

∂t
dt

)
+ k

2π

∫
M

Tr
[
A0
(
d̃Ã+ Ã2

)]
, (3.3)

plus a boundary term that vanishes under our boundary condition. We can see from this
expression that A0 is a Lagrange multiplier that imposes the constraint F̃ = d̃Ã+ Ã2 = 0,
i.e., ensures that the magnetic field vanishes. In other words, the degrees of freedom of the
theory are flat connections on Σ. Plugging in the general solution to this constraint back
into the action results in an effective action for Chern Simons theory that gets rid of the
gauge ambiguity7.

Next, we work out this procedure explicitly for a few examples.

3.1 Σ = D, a Disk Centered at the Origin

Since the interior of the disk is topologically trivial, the constraint is solved by

Ã = UdU−1, (3.4)

where U is a single valued map from D×R to G. The change of variables produces a unit
Jacobian and we obtain the effective action (see appendix A for a detailed derivation)

S = kS+
C (U) ≡ k

4π

∫
∂M

Tr
(
U−1∂φUU

−1∂tU
)

+ k

12π

∫
Y

Tr
(
U−1dU

)3
, (3.5)

6For arbitrary gauge groups G 6= SU(N), the trace should be replaced by the Killing form 〈 , 〉.
7The resulting effective theory could still be ‘gauge’ invariant since we haven’t dealt with glocal trans-

formations yet, as we will shortly see.
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which is identical to the action of the chiral Wess-Zumino-Witten model (2.8) with the
‘space’ coordinate compactified into a circle, and depends only on the boundary value of
U . This is because the value of U in the bulk can always be changed by a bulk gauge
transformation. The effective action is invariant under transformations of the kind

U → Ṽ (φ)UV (t), (3.6)

where the Ṽ (φ) accounts for the global symmetry of Chern Simons theory, and V (t) reflects
a redundancy in the parametrization of A by U . The phase space of the theory is hence
the set of based loops in the group LG/G, where LG is the loop group, i.e., the set of
maps S1 → G. As we saw in the previous section, for actions that are first order in time
derivatives of the form S =

∫
Ai(dφi/dt)dt, the symplectic form is given by ω = δA, where

δ is the exterior (antisymmetric) derivative on the phase space. Hence, the symplectic form
for Chern Simons theory on a disk is given by

ω = k

4π

∮
Tr
(
U−1δU

) d

dφ

(
U−1δU

)
. (3.7)

Note that the gauge field Aφ is nothing but the Kac-Moody current for the CWZW model,
and hence, the resulting Hilbert space is the trivial representation of the Kac-Moody Al-
gebra, with the highest weight state being the state-operator dual of the identity operator,
i.e., the Hilbert space is the space of descendants of the identity operator in the dual WZW
model.

3.2 Adding Sources

We can add static sources to the theory by including Wilson lines running through the
bulk, piercing Σ at points Pi in representations λi8. Since the Wilson correspond the static
charges in the cylinder, the constraint equations should intuitively be modified to

k

8πε
ijF aij =

∑
m

δ(x− Pm)T a(m), (3.8)

where T a(m) are the generators of g associated to the external charges. Classically, this
equation is nonsensical. The solution to this equation will not be an ordinary c-number
connection, since we have non-commuting operators on the right hand side. To paraphrase
Witten from [1], “A representation of a group should be seen as a quantum object. This
representation should be obtained by quantizing a classical theory.” Hence, there must
be a classical theory whose quantization would result in the representations above, and
there is. We use the Borel-Weil-Bott theorem to canonically associate a representation λ
corresponding to a Wilson line to the symplectic phase space G/T , T being the maximal
torus in G, with the symplectic form

ω = Trλ
(
g−1δg

)2
, (3.9)

with g a time dependent element in G and λ = λ ·H the highest weight put into the Cartan
subalgebra.

8Recall that representations of simple groups are labeled by highest weights
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This classical phase space can be obtained from the action∫
dtTrλg−1(t) (∂0 +A0) g(t), (3.10)

which is invariant under g(t)→ g(t)h(t) such that h(t) ∈ T commutes with λ. This results
in the classical phase space G/T with the above symplectic structure. Hence we have total
effective action

S = − k

4π

∫
M

Tr
(
Ã
∂Ã

∂t
dt

)
+
∫
dtTrλg−1(t) (∂0 +A0) g(t). (3.11)

Correspondingly, the constraint equation with a single Wilson line piercing the point P ∈ Σ
now becomes

k

2π F̃ + g(t)λg−1δ(2)(x− P ) = 0, (3.12)

which, after fixing P to the origin and using polar coordinates, has the general solution

Ã = Ũ d̃Ũ−1, (3.13)

where
Ũ = U exp

(1
k
g(t)λg−1(t)φ

)
. (3.14)

U is single valued on the disk. Note in particular that the holonomy of the connection
around the point P is given by ∮

Aφdφ = −2π
k
g(t)λg−1(t), (3.15)

i.e., the holonomy is determined by the conjugacy class of the representation.
As for the disk without sources, the effective action can be derived to obtain

S = kS+
C (U) + 1

2π

∫
∂M

TrλU−1∂tU, (3.16)

which also depends only on the boundary values of U (see appendix B for a detailed
derivation). The symmetry of the effective action is slightly modified to

U → Ṽ (φ)UV (t), (3.17)

except that now V (t) must commute with λ. Hence, the phase space of the theory is given
by LG/T and the symplectic form can be derived similarly to get

ω = k

4π

∮
Tr
(
U−1δU

) d

dφ

(
U−1δU

)
+ 1

2π

∮
Trλ

(
U−1δU

)2
. (3.18)

Although the additional λ dependent term in the effective action does not make this theory
the same as the CWZW model, the resulting current algebra remains the same. Hence, the
Hilbert space is still a representation of the Kac-Moody algebra, except that in this case
we don’t obtain descendants of the identity operator, but the representation with highest
weight λ, denoted by Hλ[11].
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By changing variables U → U exp(φα), where α is a root, we can see that the highest
weight λ is equivalent to the highest weight λ + kα. Also, the theory is symmetric under
the action of the Weyl group. Hence, the set of possible highest weight representations
obtainable by quantizing Chern Simons theory on a disk with sources is given by

λ ∈ Λw

W n kΛr , (3.19)

where Λw and Λr are the weight and root lattices respectively and W is the Weyl group.
If we have multiple Wilson lines running through the bulk of M , the Hilbert space

is the tensor product of the corresponding highest weight representations, which can be
decomposed into a direct sum by using the fusion rules for the representations (alternately,
through the operator algebra of the CFT dual).

3.3 Adding more Boundaries: The Annulus without Sources

With an additional boundary, the general solution to the constraint equation becomes

Ã = Ũ d̃Ũ−1,

Ũ = U exp
(
φ

k
λ(t)

)
,

(3.20)

where λ(t) can now be any arbitrary element in the Cartan subalgebra. The effective
actions picks up additional contributions from the second boundary

S = kS+
C (U1)− kS+

C (U2) + 1
2π

∫
Trλ(t)

(
U−1

1 ∂tU1 − U−1
2 ∂tU2

)
, (3.21)

where Ui’s are the values of U on the two boundaries. There is a residual gauge symmetry
(global symmetry from the bulk point of view) Ui → Uig(t), λ(t) → g−1(t)λg(t). Every-
thing is identical to the case of a disk with a source, and the boundaries result in the tensor
product of the Hilbert spaces

H =
⊕

λ∈Λw/(WnkΛr)
Hλ ⊗Hλ∗ . (3.22)

This is the Hilbert space of the full WZW model including both left and right movers.
For the annulus, the left movers appear on one boundary while the right movers appear on
another.

In particular, constructing a manifold that interpolates between two annuli in the past
and one in the future results in a map H ⊗H → H . Replacing the inner boundaries
of the annulus with Wilson lines in representations i, j, k results in maps Hi ⊗Hj → Hk

from which we can reproduce the operator algebra and the conformal blocks from Chern
Simons theory[12].

4 Discussion

We saw how intimately connected Chern Simons theory and rational conformal field theory
are by demonstrating that they are effectively different descriptions of the same underlying
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theory. Yet another connection between the two shows up when one quantizes Chern
Simons theory on compact manifolds without boundary, in which case the Hilbert space
turn out to be finite dimensional and isomorphic to the space of conformal blocks of a
rational CFT. These links between Chern Simons theory and rational CFT led Moore and
Seiberg to conjecture that conformal field theory is simply a generalized version of group
theory[13] and all rational CFTs are classified by groups via (2+1)-dimensional Chern
Simons theory[6].

Chern Simons theories, when coupled to both non-supersymmetric and supersymmetric
matter, are also conjectured to have a Bose-Fermi duality[14] which has been verified in the
large N limit by computing 4-point scattering amplitudes that turn out to violate crossing
symmetry[15, 16]. The non-supersymmetric duality can be obtained from a supersymmetric
duality between Chern-Simons theory by breaking SUSY and RG flowing[17]. Furthermore,
the Bose-Fermi duality has also found relevance in condensed matter physics by tying
together a web of dualities[18, 19].

A Effective Action for Σ = D

The constraint is solved by Ai = −∂iU U−1, for a single valued map U : D×R→ G. With
this substitution, we have

Tr εij (Ai∂0Aj) = Tr εij
(
∂iUU

−1∂0∂jUU
−1
)
− Tr εij

(
∂iUU

−1∂jUU
−1∂0UU

−1
)
. (A.1)

The first term in (A.1) gives a total derivative

Tr εij
(
U−1∂iUU

−1∂j∂0U
)

= −∂j Tr εij
(
∂iU

−1∂0U
)
, (A.2)

since U−1∂αUU
−1 = −∂αU−1. Writing the sum over indices explicitly in polar coordinates

(with the convention εrφ = +1) gives the terms

+ ∂r Tr
(
∂φU

−1∂0U
)
− ∂φ Tr

(
∂rU

−1∂0U
)
. (A.3)

The second term vanishes under integration due to the single-valuedness of U . The first
term gives a boundary integral

− k

4π

∫
Y

Tr εij
(
U−1∂iUU

−1∂j∂0U
)

= k

4π

∫
∂Y

Tr
(
U−1∂φUU

−1∂0U
)
dφ dt. (A.4)

The second term in (A.1) simplifies by using the identity

Tr εαβγ
(
U−1∂αUU

−1∂βUU
−1∂γU

)
= 3 Tr εij

(
U−1∂iUU

−1∂jUU
−1∂0U

)
. (A.5)

Hence, we have

k

4π

∫
Y

Tr εij
(
∂iUU

−1∂jUU
−1∂0UU

−1
)

= k

12π

∫
Y

Tr
(
U−1dU

)3
. (A.6)

Adding the RHS of (A.4) and (A.6) gives the action for the CWZW model.
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B Effective Action for Σ = D with a Source

Substituting (3.13) in (3.11), the first term in (3.11) becomes

εijAi∂0Aj = εij∂iUU
−1∂0

(
∂jUU

−1
)

+ εij∂iUU
−1∂jφ

k
∂0
(
Ugλg−1U−1

)
+ εij

∂iφ

k

(
Ugλg−1U−1

)
∂0
(
∂jUU

−1
)

+ εij
∂iφ

k

∂jφ

k

(
Ugλg−1U−1

)
∂0
(
Ugλg−1U−1

)
.

(B.1)

The last line of the RHS vanishes due to antisymmetry. The first line on the RHS gives
the first term kS+

C (U) in the effective action (3.16). The sum of the terms on the second
and third lines under the trace gives the following expression

2
k

TrU−1∂rUU
−1∂0Ugλg

−1 − 1
k

TrU−1∂0UU
−1∂rUgλg

−1

+1
k

TrU−1∂rU∂0(gλg−1)− 1
k

Tr gλg−1U−1∂0∂rU.
(B.2)

Adding and subtracting (2/k) Tr gλg−1U−1∂0∂rU and collecting terms gives the sum of
two total derivatives

− 2
k
∂r
(
Tr gλg−1U−1∂0U

)
+ 1
k
∂0
(
Tr gλg−1U−1∂rU

)
. (B.3)

Hence we have

− k

4π

∫
Y

Tr
(
εijAi∂0Aj

)
= kS+

C (U) + 1
2π

∫
Y

Tr ∂r
(
gλg−1U−1∂0U

)
− 1

4π

∫
Y

Tr ∂0
(
gλg−1U−1∂rU

)
.

(B.4)

The third term on the RHS above vanishes due to boundary conditions in t, giving

S = kS+
C (U) + 1

2π

∫
∂Y

Tr gλg−1U−1∂0U +
∫
dtTrλg−1∂0g. (B.5)

Integrating over the fields g(t) gives the effective action for U , given by

S = kS+
C (U) + 1

2π

∫
∂Y

TrλU−1∂0U. (B.6)
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