
STRINGS, GRAVITY, AND THE WORLD WE SEE

ADEL RAHMAN

Abstract. This paper is a discussion of some implications of string theory on gravitational physics
at low energies. We begin in Section 2 by considering closed Bosonic strings propagating in linear
perturbation backgrounds as an example in which to discuss the emergence of gravity in string
theory, motivate the idea of spacetime low-energy effective actions, and introduce the idea of com-
pactification. In Section 3, we develop the theory of spinor representations in d-dimensions and
apply this to worldsheet supersymmetry in d = 2 and spacetime supergravity in d = 11 and d = 10.
In Section 4, we give a brief tour of the five d = 10 superstring theories and finally, in Section 5,
we discuss their corresponding low energy supergravity approximations. Familiarity with quantum
(conformal) field theory, general relativity, Bosonic string theory, and d = 4 spinor representation
theory is assumed. A review of basic aspects of supersymmetry and supergravity, with a focus on
d = 4 for familiarity, is provided in the appendices, along with a quick primer on coupling classical
gravity to Fermions. The appendices are largely adapted from my final paper for PHYS 445 (albeit
with some additions and edits).
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1. Notation and Conventions

The convention for the metric signature is “mostly plus” (“East coast”) (−,+,+,+, . . . ). Space-
time indices are denoted by late Greek letters (e.g. µ, ν, ρ, . . . ), worldsheet Boson indices by early
Roman letters (e.g. a, b, c, . . . ), spinor and worldsheet Fermion indices by (dotted and undotted)
early Greek indices (e.g. α, β, γ, . . . ), local Lorentz/orthonormal frame indices by late Roman let-
ters (e.g l,m, n, . . . ), Lie algebra and/or supersymmetry generator indices by middle Roman letters
(e.g. i, j, k, . . . ), and superspace indices by capital early Roman letters (e.g. A,B,C, . . . ). In
Minkowski space, world and tangent indices are the same and we simply use late greek indices.
The worldsheet metric is denoted by hab, the spacetime metric by ĝµν in the string frame1 and gµν
in the Einstein frame, and the graviton field (when considered independently from the metric) by

1All derived objects such as the curvature tensors or related objects such as the spacetime stress-energy tensor
will be similarly “hatted”.
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Gµν . The spacetime dimension is denoted d. Unless otherwise noted, worldsheets are taken to be
Euclidean (via Wick rotation) and target spaces taken to be Lorentzian.

The Riemann curvature tensor is given by
R ρ

µν σ = ∂µΓ
ρ

ν σ − ∂νΓ
ρ

µ σ + Γ ρ
µ λΓ

λ
ν σ − Γ ρ

ν λΓ
λ

µ σ

and the Ricci tensor is defined as the contraction of its first and third indices. The corresponding
worldsheet fields will be denoted R

(2) c
ab d etc.

The γ matrices will be defined by the Clifford algebra {γm, γn} = 2ηmn1. To translate our gamma
matrix conventions (which match e.g. Weinberg) to that of other sources, take γµ → −iγµ. Note
that now γµ = γm(em)µ where em is a vielbein and m a local Lorentz index, both defined in
Appendix C, and that the gamma matrices are taken to be covariantly constant ∇µγ

µ = 0. Overbars
will denote Dirac adjoints in the in the body of this paper, but right handed two-component spinors
in the appendices of this paper.

2. Einstein and the String

2.1. Will the Real Graviton Please Stand Up? Consider a (closed, Bosonic) Polyakov string
with worldsheet (Σ, hab) (parameterized by local coordinates σa) propagating in an arbitrary
(d-dimensional) spacetime (M, gµν) which is described by embedding Xµ : Σ →M and (Euclidean)
action

(1) Sσ =
1

4πα′

∫
Σ
d2σ

√
hhab ∂aX

µ(σ)∂bX
ν(σ)gµν(X(σ))

Actions of the form (1) are called non-linear sigma models (hence the name Sσ; note that this
has nothing to do with the worldsheet coordinates!). In this context, M is called the target space
and Σ the parameter space.

Two questions immediately arise—in Minkowski spacetime, the mass spectrum of the (closed) string
contained a symmetric, traceless two-tensor Gµν , which we interpreted as the gravition—the quan-
tum of the gravitational field, which is classically represented by the metric. First off, is the graviton
still contained in the (curved space) string spectrum2? If so, for the sake of consistency, it must be
possible view the classical metric gµν as somehow being being composed of these quanta; otherwise
our interpretation is toast and we’ve lost all claim to a quantum theory of gravity. Can we find
such a decomposition?

Let’s attempt to the answer the second question while simultaneously circumventing the first. To
this end, let’s return to good old flat spacetime (R25,1, ηµν) and consider a closed string propagating
in this background with a plane wave graviton excitation of momentum q

| ξ; q 〉 = ξµν
(
α̃µ
−1α

ν
−1 + α̃ν

−1α
µ
−1

)
| 0; q 〉 , ξµν = ξ(µν), ηµνξ(µν) = 0

Note in particular that we have defined the graviton to be Minkowsi traceless. This will come back
to haunt us soon enough.

This state corresponds to a worldsheet vertex operator (Polchinski equation (3.6.14))

Vξ,p =
gc
α′

∫
d2σ

√
hhabξµν [∂aX

µ∂bX
ν eip·X ]r

2Determining the spectrum of a string propagating in a given curved spacetime actually turns out to be a quite
nontrivial task. Things are usually the same, however, up through the first level, and so we should still expect to see
a graviton.
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where [ · ]r denotes renormalization under some regularization scheme (we can always exploit Weyl
invariance to make the worldsheet locally flat and thus recover the standard expression from the
state-operator correspondence with renormalization given by normal ordering) and gc is the closed
string coupling constant which is defined based off the normalization of the vertex operator for the
tachyon. But this looks wildly familiar! Sending3 ξ → 1

4πgc
ξ we find that exponentiating the plane

wave graviton insertion (i.e. inserting a coherent graviton state) in the S-matrix simply gives us a
perturbation of the background metric

ηµν → ηµν − ξµνe
ip·X

2.1.1. A Question. Reversing the argument, for any perturbation δgµν of the background metric,
the path integral goes as

exp [−Sσ] = exp
[
−SPoly

]
exp

[
− 1

4πα′

∫
Σ
d2σ

√
hhabδgµν∂aX

µ∂bX
ν

]
If δg is Minkowski traceless4, we can Fourier decompose δg into a superposition of plane wave
graviton vertex operators and thus the right-multiplying term will again describe a coherent state
of (a superposition of) plane wave gravitons.5.

Thus we see that (closed, Bosonic, first quantized) String theory is at least a theory of linearized
quantum gravity. In this context, we actually have a pretty nifty interpretation—the string prop-
agates in a background which is described by its own massless fluctuations. This is also satisfying
since the very idea of the graviton first arose in—and, classically only makes sense in—the context
of linearized gravity. It is already well known how to quantize these “linear-perturbation gravitons”
in the naïve field-theoretic way, but seeing them arise so naturally here suggests that we might be
on the right track. Furthermore, one of the main reasons quantum gravity is so hard in the first
place is that the naïve graviton theory is hopelessly nonrenormalizable. String theory approaches
the problem more subtly, and thus offers the possibility of UV-finiteness (which makes sense, at
least heuristically, since the string length provides a natural ultraviolet cutoff).

2.1.2. More Than Meets the Eye? If it is not possible to always make δg appropriately traceless,
a new question arises—how do we go beyond linearized gravity? One interpretation, suggested by
Polchinski6[14], is that we already have all the ingredients that we need—the metric just descends
from both the dilaton and the graviton, working in tandem to give us a whole symmetric two-tensor.
In this scenario, the dilaton includes both the diagonal part of δgµν and the usual “dilaton field”
Φ (see below). There is also another possible interpretation7, which comes from a generalization
of our string theory called string field theory. In our “first quantized” string theory, we only have
(manifestly) the one string we put in by hand (ignore for now the vacuum excitations that contribute
to scattering). Perhaps it is simply the case that this poor lonely string can’t build an entire metric
on its own. A string field theory, on the other hand, offers a “second quantized” formalism, in which
we can create and destroy entire strings, and there is hope that we can now use an arbitrarily large
number of strings to build up our infinitesimal variations into genuine, general, Einstein metrics.
In particular, within this formalism, BRST quantization (which projects out the nonpropagating

3This is the normalization we should have used in the first place, we just didnt know it yet!
4As we will see, in string theory, Ricci flat metrics will actually all comprise valid expansion points in the space

of metrics. Thus it is more appropriate to expand about the nearest Ricci flat background (which will not always be
Minkowski) and require tracelessness with respect to that background metric.

5I only know of this happening in general for linearized gravity (where we can always go to transverse traceless
gauge); if this is possible in general, then it would immediately show string theory to be a full theory of nonlinear
(rather than linearized) quantum gravity.

6Page 109, in reference to equation (3.6.22c)
7This idea mainly came from Christian Ferko
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degrees of freedom in our states) projects out the trace of the metric8. We thus can at least return
to the idea that the graviton alone describes the metric—but only its physical, propagating degrees
of freedom.

2.1.3. Room for Progress. If such a decomposition is possible, one might expect that string theory
should be (in some sense) background independent (e.g. it seems reasonable that string theory
should be independent of Ricci flat background). While it is perfectly fine to prescribe some initial
classical spacetime background for our string(s) to propagate on, the actual metric configuration,
taking into account the back-reaction of the string(s) onto this spacetime, should be allowed to
dynamically vary (especially in string field theory where we might have arbitrarily many such
strings). A background independent formulation of string theory would be very helpful in describing
this phenomena, in addition to being highly desirable on more general grounds. This issue is
intimately tied to the fact that, as we will see, a non-Minkowski spacetime background corresponds
to an interacting field theory on the worldsheet, and, in particular, a non Ricci-flat spacetime
background to an interacting, nonconformal field theory on the worldsheet. On the worldsheet, the
main way we know how to tackle this issue is to restrict our attention to worldsheet field theories
that are small deviations from a given conformal field theory (so that we can e.g. use its BRST
operator in constructing the physical Hilbert space). But this precisely the same as picking a fixed
background Ricci flat metric and considering small perturbations about it. These issues, in the
context of string field theory, are expanded upon in the excellent review by Zwiebach [21].

2.2. Averting Disaster: Conformal Invariance and the β-Function. Since the action for
the nonlinear sigma model (1) action is no longer quadratic9 in Xµ, it describes an interacting
worldsheet field theory. To understand what’s going on, let us decompose our fields into classical,
solitonic solutions xµ0 (σ) and quantum fluctuations

√
α′Y µ(σ) (the constant out front makes our

fluctuations dimensionless so we can talk about their “size”). For our own ease we take xµ0 to be the
constant solution. We can now Taylor expand the “interaction” with the metric to return to the
more familiar realm of constant polynomial couplings (but at the price that we will have infinitely
many of them)

gµν(X)∂aX
µ∂bX

ν = α′
(
gµν(x0) +

√
α′ ∂ρgµν(x0)Y

ρ(σ) +
α′

2
∂τ∂ρY

ρ(σ)Y τ (σ) + . . .

)
∂aY

µ∂bY
ν

The (effective, dimensionless) coupling constant will be of order
√
α′/Rc where Rc is the typical

radius of curvature of the target (this is because ∂ρgµν ∼ R−1
c ). Thus the worldsheet theory will be

weakly coupled precisely when the string is small compared to the radius of curvature, or, equiva-
lently, if the metric does not appreciably vary over the length of the string. At small coupling, we
can use perturbation theory on the worldsheet, but, more importantly, we can ignore the internal
structure of the string, which now simply provides a natural ultraviolet cutoff. We can thus use
low energy effective field theory. Note that we have implicitly used the fact that, at weak coupling,
no massive string states are created, and so it is consistent to restrict our attention to massless
backgrounds only10. At large coupling, we get a notion of “stringy geometry”, since the string is
able to probe the ambient geometry with potentially high resolution (if the string length is small);
the point-particle, by comparison, cannot probe the ambient geometry at all since it is too small.

Note that string perturbation theory is now a double expansion (like the λ-J expansion in QFT)
in both the worldsheet coupling

√
α′

Rc
and the string coupling gs = eΦ. The former counts loops

in the CFT and the latter loops in the topological worldsheet expansion. It is important to note

8See page 53 of [16]
9Hence nonlinear sigma model
10As we will soon do; we are currently being even more restrictive and considering only gravitational backgrounds.

5



Adel Rahman March 17, 2018

that, since all interactions have dimension two, the nonlinear sigma model above (and its further
generalization which we will cover in the next section) is a renormalizable theory.

We’ve sure made a lot of fuss this quarter about the critical dimension, d = 26. We finally saw that
this ended up really just being an manifestation of the need for a worldsheet CFT with ctot = 0 in
order to cancel the Weyl anomaly 〈T a

a 〉 = − c
12 R

(2). Note that it is crucial here that the worldsheet
quantum field theory be, in particular, a worldsheet conformal field theory. Since everything we
did was with the Polyakov action, it is highly likely that something went terribly wrong in the
transition to the sigma model11. In fact, we just saw in the previous section that the sigma model
action violently changes the quantum field theory that lives on our worldsheet. What has happened
and how do we fix it?

Let’s first review an important fact. For a general QFT, conformal invariance implies scale invari-
ance, but not the other way around. We are wildly fortunate, however, that for a two dimensional,
unitary QFT with compact spatial dimensions12, scale invariance implies conformal invariance. But
scale invariance—that our theory looks the same at all scales—simply means that there is no RG
flow. The β-function needs to vanish. We have found our problem, and the Weyl anomaly gener-
alizes to

(2) βνρ(G;µ) = µ
∂

∂µ
Gνρ(X;µ)

(where we have noted that there really is just one, albeit nonconstant, coupling—G). In order to
avert disaster, we must ensure that this vanishes.

2.2.1. Computing the One Loop β-Function. Assume for now that there is no background B or Φ
fields, and let Xµ be, in particular, Riemann normal coordinates about xµ so that

gµν(X) = ηµν −
α′

3
Rµλρν(x)Y

λY ρ

To quartic order in the fluctuations, we get that

S ⊃ 1

4π

∫
d2σ

√
hhab

(
ηµν −

α′

3
Rµλρν(x)Y

λY ρ

)
∂aY

µ∂bY
ν

which, in terms of the worldsheet CFT, gives us a four point vertex

11There might be the idea that, in the transition from the Polyakov action to the sigma model, we no longer
require Weyl invariance. This is simply not so, which we can see by simply going back to the actual reason why we
needed Weyl invariance in the first place—the actual action describing the string is the Nambu-Goto action

SNG =
1

2πα′

∫
d2σ

√
X∗g

(X∗ the pullback of the embedding) which is, among other things, generally covariant. The Polyakov action was
obtained by introducing the auxiliary worldsheet metric hab which allowed us to pull our matter fields, X, out from
under the square root, but this was done in flat spacetime. Using this trick— introducing an auxiliary metric to pull
our matter fields out of the square root—is completely general, and, in a general spacetime, gives us precisely our
original σ model action (without B and Φ fields). This trick will only gives us the same physics as the NG action if the
auxiliary degrees of freedom are fixed and only serve to act as Lagrange multipliers. But this is precisely equivalent
to demanding Weyl invariance of the new action.

12c.f. Polchinski’s seminal paper “Scale and Conformal Invariance in Quantum Field Theory” [13]
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(3) kνbkµa

λ ρ

νµ

∼ α′habkµak
ν
bRµλρν

where kµa is the worldsheet 2-momentum of the coordinate field Xµ.

We can now calculate the one loop correction to the propagator〈
Y λ(σ)Y ρ(σ′)

〉
= −1

2
ηλρ ln

∣∣σ − σ′
∣∣2

which contains

α′habkµak
ν
bRµλρν lim

σ′→σ

〈
Y λ(σ)Y ρ(σ′)

〉
= α′habkµak

ν
bRµλρν lim

Λ→∞

∫ Λ d2p

(2π)2

〈
Y λ(p)Y ρ(p)

〉
To regulate this explicitly, we work with dimensional regularization

lim
σ′→σ

〈
Y λ(σ)Y ρ(σ′)

〉
= 2πηλρ lim

ε→0

∫
d2+εk

(2π)2+ε

eik·(σ−σ′)

k2
−→
σ→σ′

lim
ε→0

ηλρ

ε

and to cancel this divergence, we split the metric into a physical part and a counterterm part such
that

δRµλρν(x)Y
λY ρ∂aY

µ∂bY
ν = −1

ε
Rµν∂aY

µ∂bY
ν

which can be accomplished by wavefunction renormalization Y µ = Y µ
P + α′

6εR
µ
νY ν and coupling

renormalization Gµν = (GP )µν +
α′

ε Rµν .

In dimensional regularization, the β-function is given by the coefficient of the purely divergent part
of the coupling (this will be important in the next section), i.e.

βµν(G) = α′Rµν

2.3. A Surprise. Look at what we just found. Cancelling the Weyl anomaly13 (at one loop) is
completely equivalent to the target space being Ricci flat. What’s more, we are working in a
vacuum target (there are no fields present other than gµν !), and so we that, in this case, cancelling
the Weyl anomaly at one loop is equivalent to satisfying Einstein’s equation

Rµν = 8πG

(
Tµν −

T

d− 2
gµν

)
= 0

2.3.1. Correcting Mr. Einstein. Since we are looking at a “quantum theory of gravity”, it makes
sense to look for “quantum corrections” to the Einstein equations. This simply comes from looking
at the β-function above at higher orders in the expansion parameter

√
α′

Rc
. For example, at two-loop

order we have
βµν = α′Rµν +

α′2

2
RµλρσR

λρσ
ν + · · · = 0

This makes sense, since these corrections will only be appreciable when the variation of curvature
becomes comparable to the string length; for appropriately small string lengths (e.g. near 14 Plank
scale), this is exactly where we expect quantum corrections to GR to kick in. Such corrections to

13In the absence of background B and Φ fields, whose effects are expected to be small, at typical energy levels
and circumstances, in the classical limit

14But not at! In fact, much less “near” than we would expect—see below.
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the Einstein equations also appear for the heterotic string starting at two loops and for the type II
string starting at four loops.

2.4. Strings in Background Fields. Given the interpretation above, for consistency’s sake it
seems appropriate to consider the string to be propagating in a background15 described by all its
massless excitations16

Sσ =
1

4πα′

∫
Σ
d2σ

√
h
{(
habĝµν(X) + iε̄ abBµν(X)

)
∂aX

µ∂bX
ν + α′R(2)Φ(X)

}
As we saw in class, the Dilaton Φ(X) determines the string coupling constant gs = e〈Φ〉17. Note
that this constant is determined by the VEV of a dynamical field, again suggesting the idea that
string theory is free of any (continuous) free parameters other than the string length `s =

√
α′.

Note that this means that (topological) perturbation theory is only valid if the string is confined
to regions of spacetime where eΦ(X) � 1.

The action (4) is both symmetric under spacetime diffeomorphisms (general covariance) and under
the gauge transformation B → B + dΛ (Λ ∈ Ω2(Σ)) of the Kalb-Raymond field, under which the
string can carry charge. The Kalb-Raymond Field and interaction is the first of many generaliza-
tions of the standard one-form gauge symmetry (such as, e.g the photon Aµ) to higher dimensional
p-form gauge symmetries18. Is interesting to note that the field strength H = dB of the Kalb-
Raymond field, when considered in tandem with the graviton/metric, essentially acts like a torsion
term augmenting (after raising an index) the spacetime Levi-Civita connection. This allows for
torsionful extensions of general relativity (such as full Einstein-Cartan theory) where now the tor-
sion can be tuned to be small from stringy considerations. For this reason, H is sometimes called
the torsion form.

2.5. The Physics We See: The Low-Energy Effective Action. The Dilaton breaks manifest
Weyl invariance at order α′ (notice the prefactor of α′ in the Dilaton term in the action), which
must be compensated by quantum (one loop, in the α′ expansion on the worldsheet) corrections to
g and B. For the special case where δg, B and Φ are “small”, i.e.

ĝµν(X) = ηµν − 4πgc ξ(µν)e
ik·X , Bµν(X) = −4πgc ξ[µν]e

ik·X , and Φ(X) = −4πgcΦ0e
ik·X

we find a Weyl anomaly of the form

T a
a = − 1

2α′ β
G
µν h

ab∂aX
µ∂bX

ν − i

2α′ β
B
µν ε̄

ab∂aX
µ∂bX

ν − 1

2
βΦR(2)

15The classical spacetime metric, g, differs from the metric ĝ in the sigma model for reasons to be discussed soon.
16The ε̄ here carries the unorthodox normalization

√
h ε̄12 = 1 , which stems from the fact that the Kalb-Raymond

interaction should naturally be written as the simple integral over the worldsheet of the Kalb-Raymond two form

(4) SKR =

∫
X(Σ)

B =

∫
X(Σ)

Bµν dX
µ ∧ dXν =

∫
Σ

X∗B =

∫
Σ

Bµν ∂aX
µ∂bX

νdσa ∧ dσb

The factor of ε̄ is required to “factor out” the wedge product, while the accompanying factor of i is just a remnant
of our Wick rotation, and will return to unity if we go back to Lorentzian signature.

17More generally, we have gs = eΦ0 where Φ0 is the asymptotic value of the Φ field, when defined.
18Just as a one-form gauge field is the connection on some principal bundle, the Kalb-Raymond field is a connection

on a mathematical object called a gerbe.
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where the coefficients β( )19 (see the previous section) provide us with the β-function(al)s of the
theory, which, to O(α′, ∇̃2)20 include

βGµν = α′R̂µν + 2α′∇̂µ∇̂νΦ− α′

4
HµλρĤ

λρ
ν + . . .

Canceling the Weyl anomaly now gives us Einsteins equation for (Kalb-Raymond and dilaton)
matter with

8πG

(
T̂µν −

T̂

d− 2
ĝµν

)
=

1

4
HµλρĤ

λρ
ν − 2∇̂µ∇̂νΦ

It is interesting to note that the equation βBµν = 0 can be viewed of the generalization of the
spacetime Maxwell equations for the three-form Kalb-Raymond field. It is important to note that,
because of the necessity of canceling the Weyl anomaly, strings can only consistently propagate in
a background which satisfies the appropriate equations of motion. This is part of the reason why
off-shell vertex operators don’t quite make sense in string theory.

More generally, we can view the equations β( ) = 0 as coupled equations of motion for the fields
g, B, and Φ. A spacetime physicist, who knows nothing about the string or the worldsheet21 and
who only has access to our current experimental technology will only see a spacetime, low-energy,
effective action, or low-energy-effective action (to draw contact with standard QFT and save a
few characters), which should give rise to the same equations of motion as above. An example is

(5) SEff =
1

2κ20

∫
ddX

√
−ĝ e−2Φ

(
2(26− d)

3α′ + R̂− 1

12
HµνλĤ

µνλ + 4 ĝµν∂µΦ∂νΦ+O(α′)

)
where κ0 is some normalization. On dimensional grounds we expect that κ20 ∼ `d−2

s ∼ α
d−2
2 . At

low energies, scattering predictions made by SEff agree with those made by the string S-matrix. We
note for now that the low energy effective action for the superstring has a contribution of nearly
identical form, except with a first piece depending on d− 10 rather than d− 26.

2.5.1. The Einstein Frame. This whole time, we have been writing the metric with a funny hat.
What gives? Well, there’s something equally funny going on—the metric term in the action does
not take standard Einstein-Hilbert form, and the dilaton kinetic term is of the wrong sign. Some-
thing seriously weird seems to be going on.

First let’s think about why the action is the way it is. The factor of e−2Φ out front comes from the
fact that the action has been computed at tree level in string perturbation theory. The constant
mode of the dilaton simply provides the constant part of the string coupling and is innocuous. It
is thus helpful to isolate the varying part of the Dilaton via the field redefinition ϕ = Φ− 〈Φ〉. We
can similarly redefine22

(6) gµν = e−
4ϕ
d−2 ĝµν

19We absorb the flat spacetime anomaly, including contributions from the ghost fields, into the β function for Φ.
20We have also ignored terms of higher than second order in derivatives, since they will come in at higher than

linear order in the worldsheet α′/Rc expansion
21Dr. Sethi likes to mention this poor guy a lot.
22Note that this is a conformal transformation g = Ω̃2g̃ and thus does not solve the trace problem,

η̃µν g̃µν 6= 0 =⇒ ηµνgµν = Ω̃2ηµν g̃µν = Ω̃4η̃µν g̃µν 6= 0

9
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Note that this is just a conformal rescaling with conformal factor Ω = e2ω with ω = − 2ϕ
d−2 . We

thus get that

R = e
4ϕ
d−2

(
R̂+ 4

d− 1

d− 2
∇̂µ∇̂µϕ − 4

d− 1

d− 2
∂µϕ∂

µϕ

)
and so

(7) SEff =
1

2κ2

∫
ddX

√
−g
[
2(26− d)

3α′ e
4ϕ
d−2 +R− 1

12
e−

8ϕ
d−2HµνλH

µνλ − 4

d− 2
∂µϕ∂

µϕ +O(α′)

]
where now all indices have been raised and lowered with gµν and gµν . The action for gµν is the
Einstein-Hilbert action; gµν is the metric that we see in general relativity. In this context, the
choice of field definitions is usually referred to as a choice of frame. This frame is known as the
Einstein frame and the former as the string frame. ĝµν is called the string metric or the sigma
model metric and gµν the Einstein metric.

The gravitational coupling is given by κ2 = κ20 e
2〈Φ〉 ∼ `d−2

s g2s . In d dimensions, we usually identify

κ2 = 8πGN,d

where GN,d is the d-dimensional Newton constant. If we used this to define the d-dimensional
Planck scale, we see that the perturbative regime is actually the regime where the string is still
large compared to the d-Planck scale (so that the notion of geometry, and hence of a continuous
string, still makes sense)

gs � 1 =⇒ `p,d � `s

Thus, actually studying the bona fide quantum aspects of gravity requires the non-perturbative
regime of string theory.

2.5.2. A Victory and a Loss? Note that the reason we were able to consider two different metrics—ĝ
and g—came down to the fact that we had a background massless scalar field Φ. In some sense, we
can use Φ as a “ruler” of sorts to compare metrics. In another, more definite sense, the long range
attractive forces mediated by Φ can “mix” with the gravitational force and violate the equivalence
principle (see the next section for an example). In order to protect the equivalence principle at the
scales where it has been supported, we must find a way to make Φ sufficiently massive, which has
been found in superstring theory.

2.6. The Dilaton and Violations of the Equivalence Principle. Let’s explore in a bit more
detail what was meant by the comment that a massless dilaton violates the (weak) equivalence
principle.

In particular, a massless dilaton violates the universality of freefall. To see this in action, let’s
consider a simplified (Einstein frame, compactified) effective action of the form

SEff, toy =
1

8πGN

∫
d4x

√
−g
(
R− 2∇µϕ∇µϕ − Ψ̄DΨ− 1

4g20
Ξ(ϕ )F 2

)
where Ψ represents all matter fields, D is the appropriate representations of the (spacetime +
gauge) covariant derivative, and F the gauge field strength (e.g. for SU(3) × SU(2) × U(1)). Ξ
is proportional to the Weyl transformation taking us from the string frame to the Einstein frame,
gµν ∝ Ξ(Φ)ĝµν and Ξ(ϕ ) := Ξ[Φ(ϕ )]. Thus the gauge field couples to the dilaton in such a way
that the effective gauge coupling is given by g−2 = g−2

0 Ξ(ϕ ), which, in the case of the standard
model, would imply that the QCD mass scale goes as

ΛQCD ∼ C√
Ξ(ϕ )

10
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where C is some constant depending on the RNG flow behavior of the QCD coupling constant and
the choice of string unification scale. Under the assumption of a universal Ξ(ϕ ), the masses of all
particles will depend on ϕ only though Ξ, i.e. m(ϕ ) = m[Ξ(ϕ )].

Now consider two (nearly particulate) masses (whose masses primarily come from quarks; for
definiteness consider nonrelativistic Hadrons), A and B coupled by interaction potential (we work,
for simplicity, in the Newtonian regime)

VAB = −GABmAmB

rAB

where GAB is the Newton “constant”, now allowed to vary from interaction to interaction, which
we guess to parameterize as

GAB = GN (1 + αAαB)

Consider now adding an external mass mE . Masses A and B will fall in the gravitational field of
mE with accelerations aA and aB differing by23(

∆a

a

)
AB

:= 2
aA − aB
aA + aB

' (αA − αB)αE

The massless dilaton will invoke an equivalence principle violation of the form(
∆a

a

)
AB

∝ [k(ϕ − ϕ ∗)]2

where ϕ is the present value of the dilaton, ϕ ∗ a point which maximizes Ξ24, and k the curvature
of ln Ξ at ϕ ∗. Note that, in this model, a constant dilaton fixed at ϕ = ϕ ∗ would not affect the
equivalence principle, which would then remain “non-anomalous” at the quantum level. For more
details, see [7].

2.7. The World We See: Compactification and Four Dimensional Physics. The Bosonic
string lives in 25 + 1 dimensions and the superstring in 9 + 1. Every observation we’ve ever made
does not suggest that we live in something other than 3 + 1 (i.e. we observe three macroscopic
spacelike dimensions and one macroscopic timelike dimension). If string theory is really our theory
of everything, there must be some way to reconcile these facts. How do we do this?

Since gravity is dynamical in string theory, it is possible for the “extra dimensions” to curl up
and/or “compactify”. In some situations this is kinematically prescribed and in others dynamically
required. Let’s looks for some toy model examples of the former for the vacuum effective action.

When the effect of matter is small, at lowest order in α′, the EOM for gravity is simply the
requirement of Ricci flatness

Rµν = 0

We seek a solution geometry of the form (R3,1 ×MI , g
(3,1) ⊕ g(22)) where MI is a compact, 22

dimensional manifold equipped with Ricci flat metric g(22). The simplest such manifold is just the
22-dimensional torus, MI = T 22, equipped with a flat metric (this provides a so-called toroidal
compactification). In general, we find use in considering compactifications involving the so-called
Calabi-Yau manifolds—compact, complex manifolds with vanishing first Chern class25. The Stan-
dard Model has been well tested to energies of around 1-10 TeV (the most recent run, which began
in 2015, has been focusing on the 13 TeV range), so that, naïvely, if the standard model particles

23Note that, unless αA 6= αB for some pair of objects, GAB will just be a universal constant.
24In many gravity-dilaton-matter cosmological models, the dilaton is dynamically driven towards maxima of Ξ.
25The vanishing of the Chern class, in particular, guarantees the existence of Ricci flat metrics by Yau’s theorem
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can access X, the maximum length scale must be . (TeV)−1 ∼ 10−16cm, though much research
has also been done on scenarios that allow for “large” extra dimensions as well.

There is also the potential that our world is some four-dimensional submanifold of an ambient
d-dimensional universe; these are the so-called “brane-world” models. These are interesting since
they allow for the possibility that, while most of these physics we see is restricted to some D4-brane,
gravity, at high-energies, might be allowed to “leak” into the “bulk” spacetime, allowing for entirely
new, potentially testable, gravitational physics; see e.g. [10]. In these scenarios, the constraints on
the extra dimensions are much weaker, since the main input must come from gravitational experi-
ments, which simply cannot be done to the same precision as particle experiments with our current
knowledge. Because of this, the bound on the length scale in these scenarios is something more like
. 10−5cm, which leaves lots of wiggle room26.

Extra dimensions (though often much less than 6) have been researched since the 1920’s—when
Kaluza-Klein theory first came into being—as a potential source of new physics. There is extensive
literature on this, mainly in terms of particle phenomenology, on the ArXiv. On the gravity side,
there is also research being done on the potential for observable signatures of extra dimensions in
gravitational waves[1].

There are quite a few technical problems that can occur during compactification, and so one often
restricts explicit consideration to static spacetimes with time dependence introduced a fortiori via
the low energy effective action (which is fine so long as the time scale is much larger than the string
scale, which is often the case in cosmological applications). The static constraint is mainly there to
enforce that the only X0-dependent term in the action is its kinetic term. Under this assumption,
we can relax the 26 fields Xµ of our theory to be, instead X0 and any other unitary CFT with
c = c̃ = 25 (this will ensure that we maintain Diff×Weyl invariance and controls the spacetime
inner product between states). In particular, we can choose to utilize the fields Xµ for µ = 0, 1, 2, 3
and then some other compact (i.e. of discrete spectrum) unitary CFT with c = c̃ = 22. The only
problem with this is that, for two dimensional CFTs, it is not clear that these really constitute
different theories at all. In two dimensions, many—if not all—string theories with a given set
of (worldsheet) gauge symmetries and worldsheet topology represent different vacua of the same
theory.

2.7.1. A Toy Model for Compactification. Consider the Einstein-Hilbert part of the low-energy
effective action in the Einstein frame (7)

SEH =
1

2κ2

∫
d26X

√
−g R =

vol(MI)

2κ2

∫
d4X

√
−g(3,1)R(3,1)

where we have “integrated out” the extra dimensions (ignoring the many possible moduli of X
along the way). The effect of the extra dimensions in this model is to modify the Newton constant

8πGN,4 =
κ2

vol(MI)
=⇒ GN,4 =

1

vol(MI)
GN,26

which gives us a plank scale

`p,4 ∼
gs`

12
s√

vol(MI)

subject to the constraints that the length scales of MI be greater than `s and gs � 1 (so that our
analysis is consistent), which tells us that that `p,4 < `s (again, this is needed for consistency, so
that we can ignore the fine details of MI). This shows that, even though `p,4 is quite small, `s might

26pun not intended
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be considerably larger due to the volume of the extra dimensions, potentially bringing us closer to
the realm of experimental testability.

3. Away from the World We Know: Working in d 6= 4

We now take a brief detour to review the generalization of supersymmetry and supergravity to
higher dimensions (the appendices mainly focus on the case d = 4 to avoid introducing the po-
tentially confusing subtleties associated with extra dimensions). To begin, we first must under-
stand the generalization of the concept of spinor representations of the SO(3, 1) Lorentz algebra to
SO(d− 1, 1) in d dimensions.

Note once more that, in stark contrast with the appendices, in the body of this paper we will use
overbars to denote the Dirac adjoint. For example, Q will denote the corresponding SUSY generator
in the Dirac representation, i.e. such that {Q,Q} = −2/P .

3.1. Spinors and γ Matrices in d Dimensions. The Dirac γ matrices in d dimensions are
simply a representation of the d-dimensional Clifford algebra

{γm, γn}αβ = 2ηmn1αβ

generated by d matrices γm. It is clear that γ0 is skew-Hermitian and the remaining γi Hermitian.

3.1.1. Even Dimensions. Write d = 2k + 2 for k ∈ N. We can essentially find all even dimensional
representations of the Clifford algebra by essentially building Fock spaces. We first change to a
basis of raising and lowering operators

(8) γ0± :=
1

2

(
±γ0 + γ1

)
and γi± :=

1

2

(
γ2i ± iγ2i+1

)
i = 1, . . . , k

(9) {γi+, γj−} = δij

and find the unique “ground state” ζ, given by γi−ζ = 0 for all i. A basis of the representation
space can be built up from acting on ζ with all possible combinations of raising operators, and
the matrix elements of the γm can be found using the commutation relations (9). Call these basis
states

ζ(s0,s1,...,sk) := (γk+)sk+
1
2 . . . (γ0+)s0+

1
2 ζ

where each27 si = ±1
2 and ζ corresponds to si = −1

2 .

One of the main cases of interest will be d = 2, where we get the real Majorana-Weyl represen-
tation

γ0 =

(
0 1

−1 0

)
and γ1 =

(
0 1
1 0

)
We can actually use these to recursively build the γ matrices in arbitrary even dimension, via

γd−2 = 12k ⊗ σ3, γd−1 = 12k ⊗ σ2, (γm)2k+2 = (γm)2k ⊗
(
−1 0
0 1

)
, m = 0, . . . , d− 3

The corresponding Σmn = 1
4{γ

m, γn} satisfy the Lorentz algebra and we see that the states of the
Fock space form the 2k+1 dimensional Dirac spinor representation (an irrep) of the Lorentz algebra
SO(2k + 1, 1). While it is not possible in d = 4, in d = 2 and d = 10 (in general in d = 2 mod 8),
we can impose both the Majorana reality and the Weyl chirality condition simultaneously, giving
real Majorana-Weyl spinors of definite chirality.

27Recall the Pauli exclusion principle.
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The generators Σ2a,2a+1 commute and can thus be simultaneously diagonalized. Define the spin
operators

Sa = iδa,0Σ2a,2a+1 = γa+γa− − 1

2

so that ζ(s0,...,sk) is a simultaneous eigenstate of each of the Sa with eigenvalue sa.

In (even) d 6= 4, the generalization of γ5 is simply called γ:

γ := i−k γ0γ1 . . . γd−1 = 2k+1S0S1 . . . Sk

(γ)2 = 1, {γ, γµ} = 0, [γ,Σmn] = 0

Note that, for even d, this gives us a notion of Weyl spinor and hence shows that the Dirac
representation is reducible. In even dimensons, we define the projection operators P± = 1

2 (1± γ)
onto subspaces of definite chirality.

3.1.2. Odd Dimensions. We can use γ to form representations of the Clifford algebra in odd di-
mensions d = 2k + 3 by adding either γd = γ or γd = −γ (since these commute with the Σmn of
d = 2k + 2) to the algebra for d = 2k + 2, giving an unique spinor irrep of SO(2k + 2, 1).

3.2. SUSY on the Worldsheet: d = 2. Let’s touch ground with the two-dimensional worldsheet
superalgebras that we will need for the superstring. The smallest spinor irrep in d = 2 is the
Majorana-Weyl rep from above with one Hermitian component, while the general (Ñ ,N ) algebra
will have Ñ Hermitian left-moving supercharges Q̃i and N Hermitian right-moving supercharges
Qj , obeying

{Q̃i, Q̃j} = δij
(
P 0 − P 1

)
, {Qi, Qj} = δij

(
P 0 + P 1

)
, and {Q̃i, Qj} = Zij

where Zij is a (now unconstrained) central extension term. This is the algebra satisfied by the
superconformal generators on the superstring worldsheet.

3.3. Supergravity in d = 11. The largest supersymmetry algebra allowed in d = 4 is N = 8 with
32 supercharges, since anything more would require the existence of particles with helicity greater
than 2 (for which it is currently believed to be impossible to construct nontrivial interactions). This
same limit will hold in higher dimensions, since we can always reduce to four via toroidal compact-
ification (unless no supersymmetry survives the compactification, which is pointless). Since spinor
representations for d ≥ 12 are 64-dimensional or larger, we see that the highest dimension that
we can consistently consider supersymmetry in is d = 11 (note that in this dimension, since all
spinors are 32 dimensional, N = 8 is also the smallest allowed supersymmetry, and so we see that
this is the unique physically consistent supergravity of top dimension). This exceeds the critical
superstring dimension by one, but is still a worthwhile starting point.

The Majorana supercharge satisfies the algebra {Qα, Qβ} = −2Pµγ
µ
αβ. The massless irreps contain

1
2 · 28 = 128 Bosons and Fermions each. By calculating the spins S1 through S4, we see that the
graviton multiplet contains two Bosonic representations of SO(9): the traceless symmetric two
tensor (graviton) and a three form. There is a single Fermionic vector-spinor representation. In
particular, the gravitino Ψµα will be the mediator of local supersymmetry.

There is a unique action (with two or fewer derivatives) with Bosonic part

(10) SSUGRA, 11 =
1

2κ2

∫
d11x

√
−g
(
R− 1

2
|F4|2

)
− 1

12κ2

∫
A3 ∧ F4 ∧ F4

where A3 is a three-form potential and F4 := dA3 its field strength. The last term is a gauge-
invariant Chern-Simons term.
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3.4. d = 10 Type IIA SUGRA. We can compactify the d = 11, N = 8 supergravity above
via dimensional reduction—compactifying on the torus and keeping only the massless fields. The
d = 11 Majorana spinor SUSY generator becomes a set of two d = 10 Majorana-Weyl spinors
Qi

α, one of each chirality. The product of two spinors of opposite chirality yields and scalar, and
of the same chirality a vector. Note that gamma matrix, γ10, corresponding to the compactified
dimension, reduces to the γ of the d = 10 algebra, giving central charge term proportional to the
Kaluza-Klein momentum

{Q1
α, Q

2
β} = −2P10(P+γ)αβ

The dimensional reduction leaves a scalar dilaton, a Kaluza-Klein vector (one-form), a two-form,
and a three-form. Supersymmetry determines the massless particle content completely, and we
see that (essentially inevitably) the spectrum is identical to that of the type IIA superstring. We
interpret this supergravity as corresponding to the type IIA superstring’s low energy limit.

Let’s now go through the motions of obtaining the action for the type IIA theory from dimensional
reduction of d = 11, N = 8 supergravity. The latter theory contains a metric28 g

(11)
µν and a three

form A
(11)
3 and has an action whose Bosonic part is given by (10). Under dimensional reduction29,

the eleven dimensional metric, g(11)µν , is replaced by a new metric, gµν := g
(10)
µν , a scalar σ, and a

gauge field A′
µ, which appear from considering only those eleven dimensional metrics which are

invariant under translations in the compactified direction

ds2(11) = g(11)µν dxµ(11)dx
ν
(11) = gµνdx

µdxν + e2σ(x
µ)
(
dx10(11) + ρν(x

µ)dxν
)2

The gauge field A(11)
3 reduces to two gauge fields A3 and A2 (which descends from the components

of A(11)
3 which lay along the compactified direction). In terms of the dilaton, Φ = 3σ/2, the vielbein

reduce via

(emµ)
(11) =

(
e−Φ/3eaµ 0

e2Φ/3A′
µ e2Φ/3

)
The Bosonic part of the action thus splits into three parts

(11) S1 =
1

2κ210

∫
d10x

√
−g
(
eσR− 1

2
e3σ |F2|2

)

(12) S2 = − 1

4κ210

∫
d10x

√
−g
(
e−σ |F3|2 + eσ

∣∣F ′
4

∣∣2)

(13) S3 = − 1

4κ210

∫
A2 ∧ F4 ∧ F4 = − 1

4κ210

∫
A3 ∧ F3 ∧ F4

We have compactified the theory on a circle of radius R and thus have defined κ210 := κ211/2πR; we
have also defined F ′

4 := dA3 −A′ ∧ F3, which we regard as a physical field strength which happens
to satisfy a nonstandard Bianchi identity: dF ′

4 = −F2 ∧ F3, whose origin stems from residual gauge
freedom from the compactified dimension.

28From now on we will only consider metrics in the string frame, and hence will drop the “hats” since there will
be no chance for confusion.

29See e.g. Section 8.1 of [15].
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3.5. d = 10 Type IIB SUGRA. There is a second supergravity in d = 10, which is not obtained
by compactifying an eleven-dimensional theory. This supergravity contains two superalgebras,
given by {Qi

α, Q
j
β} = −2pµ(P+Γ

µ)αβδ
ij , of the same chirality. The graviton multiplet contains

the graviton, two scalars, two two-forms, and a four-form (with self-dual field strength). This
is the same as the massless content of the type IIB superstring, and we will again interpret this
supergravity as that superstring’s low energy limit.

4. The Superstring Theories

The key difference between the Bosonic string and the superstring is the addition of worldsheet
and spacetime supersymmetry and thus of worldsheet and spacetime Fermions. There are two ways
of doing this. The first, the so-called Green-Schwarz (GS) formalism, which makes spacetime
supersymmetry manifest (which thus gives us spacetime Fermions manifestly), and the so-called
Ramond-Neveu-Schwarz (RNS), which adds Fermionic modes on the worldsheet (i.e. makes
the worldsheet a two dimensional supermanifold, carrying a two dimensional superconformal field
theory), which instead gives us emergent spacetime Fermions and supersymmetry. Note that the
GW formalism also gives us worldsheet supersymmetry, but in GW this is emergent rather than
manifest, the direct opposite of the RNS formalism.

The superstring has critical dimension d = 10 30, has no tachyon, and still has the fields Gµν , Bµν ,
and Φ in its spectrum. In this context, we sometimes instead call Bµν the Neveu-Schwarz two form.
We also find not just spacetime Fermions, but additional massless spacetime Bosons. The form of
these extra Bosons depends on the type of superstring theory we consider.

Let’s be clear on what we mean by “type of superstring theory”. The Bosonic string is a unique
theory (in the sense that the one discrete choice we make—open or closed—turns out to not really
matter). For the superstring, we can make a number of discrete choices which give rise to different
perturbative superstring theories (although later developments suggest that they are all actually
part of the same framework, that of M-theory).

The most important of these discrete options (let’s work for now in the RNS formalism) is whether
or not we add worldsheet Fermions in both the left-moving and right-moving sectors of the string,
or if we choose the Fermions to all move in one direction (usually taken to be the right). This gives
rise to two different classes of superstring theory

• Type II in which we have both left and right-moving worldsheet Fermions. The resulting
spacetime has d = 10,N = 2 supersymmetry (32 supercharges). These theories contain
extra massless Bosonic states known as Ramond-Ramond (RR) fields. The action is given
by

(14) SII =
1

4πα′

∫
d2σ

√
h gµν

[
hab∂aX

µ∂bX
ν +

i

2
ψµγa∂aψ

ν +
i

2

(
χaγ

bγaψµ
)(

∂bX
µ − i

4
χbψ

µ

)]
with the leftmoving worldsheet supergravity (we are coupled to metric hab!) given by

δXµ = iξψµ, δψµ = γa
(
∂aX

µ − i

2
χaψ

µ

)
ξ, δψ̄µ = 0

δgab = iξ(γaχb + γbχa), δχa = 2∇aξ

30This is still out of the necessity of cancellation of the Weyl anomaly, but now we have to add in the βγ ghosts
and account for the central charge contributions from these and from the worldsheet Fermions. All in all we get

0 = cBose + cFerm + cbc + cβγ = (d+ d/2)− 26 + 11 =⇒ d = 10
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The rightmoving supersymmetry is analogous.

• Heterotic in which we only have right-moving worldsheet Fermions. More accurately,
in the heterotic string, we exploit the independence of the left-moving and right-moving
sectors to get equivalent descriptions of the string using either a right-moving Fermionic
sector, or a left-moving Bosonic sector (the theory will end up containing both sectors).
The resulting theory has d = 10,N = 1 supersymmetry (16 supercharges). These theories
do not contain Ramond-Ramond fields; instead each comes with a non-Abelian spacetime
gauge field. The action for the Fermionic formulation of the theory is given (in worldsheet
lightcone gauge/coordinates) by

(15) SHet =
1

π

∫
d2σ gµν

(
2 ∂+X

µ∂−X
ν + iψµ∂+ψ

ν + i

32∑
i=1

λi∂−λ
i

)
where the λi are a collection of Lorentz singlets.

In each of these cases, there is one further discrete choice we can make
• Type IIA: The Ramond-Ramond fields are a one-form Cµ and a three-form Cµνρ. We

think of each of these as a gauge field. The theory is Poincaré invariant and has N = 8
supersymmetry.

• Type IIB: The Ramond-Ramond gauge fields are a scalar C, a two-form Cµν , and a four-
form Cµνρσ. The four-form has a self dual field strength F5 = ∗F5 (there are some subtleties
involved with this; see the next section).

• Heterotic SO(32): Comes with a spacetime SO(32) Yang-Mills field.
• Heterotic E8 × E8: Comes with a spacetime E8 × E8 Yang-Mills field.

Note that both SO(32) and E8×E8 contain the SU(3)×SU(2)×U(1) gauge group of the standard
model. In particular, Candelas, Horowitz, Strominger, and Witten discovered that the E8 × E8

Heterotic string admits a “spontaneous” compactification from ten to four dimensions on a six
dimensional Calabi-Yau manifold, with a resulting four dimensional theory that has gauge group
E6 ⊃ SU(3)× SU(2)× U(1) (which is thus a candidate for a GUT) [20].

There is one more superstring theory,
• Type I: Which includes both open and closed strings in d = 10. This theory theory has 16

conserved supercharges, which manifest themselves as a spacetime Majorana-Weyl fermion.
The massless particle content includes a supergravity multiplet (G, B, and Φ with left
handed Majorana-Weyl gravitino and right handed Majorana-Weyl dilatino) in the closed
string sector and a super-Yang-Mills multiplet in the open string sector. The particle content
is the same as that of the SO(32) heterotic superstring. The type I superstring arises from
the type IIB superstring by modding out that theory’s left-right symmetry in a procedure
called orientifold projection (a projection onto strings that are invariant under reversal of
orientation) which, among other things, adds the twisted sector of open strings.

5. The View from Spacetime: The Low Energy Supergravity Approximation

In the spirit of section 2, let’s finally look at the effective low-energy limits of the various d = 10
superstring theories considered in the previous section31. Just as the low-energy effective action (7)
was essentially a classical gravity + matter action, the superstring low-energy effective actions will
be classical supergravity + (supersymmetric) matter actions. Since the d = 10 superstring theories
all have either 16 or 32 supersymmetry generators, the low-energy effective action will turn out to

31I guess we are the poor, ignorant, spacetime physicist!
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be completely determined by the high degree of supersymmetry.

The overarching idea here is that, in the low-energy limit, it is a good approximation to replace
string theory by a supergravity theory describing the interactions of the massless modes only,
since, at weak coupling, the masses of all other states become quite large, and thus too heavy to
be observed.

5.1. The Type IIA Superstring. Recall the Bosonic components of the action for the d = 11 → d = 10
dimensionally reduced supergravity

S1 =
1

2κ210

∫
d10x

√
−g
(
eσR− 1

2
e3σ |F2|2

)

S2 = − 1

4κ210

∫
d10x

√
−g
(
e−σ |F3|2 + eσ

∣∣F ′
4

∣∣2)

S3 = − 1

4κ210

∫
A2 ∧ F4 ∧ F4 = − 1

4κ210

∫
A3 ∧ F3 ∧ F4

Since we now want to interpret these as having descended from string theory in the low energy
limit, we must be able to relate the fields above to the matter content of our string theory via field
redefinitions. We can do this, be redefining

gµν → e−σgµν and Φ =
3σ

2

giving

(16) SIIA, Eff = SNS, Eff + SR, Eff + SCS, Eff

with

(17) SNS, Eff =
1

κ210

∫
d10x

√
−g e−2Φ

(
R+ 4∂µΦ∂

µΦ− 1

2
|H3|2

)

(18) SR, Eff = − 1

4κ210

∫
d10x

√
−g
(
|F2|2 +

∣∣F ′
4

∣∣2)

(19) SCS, Eff = − 1

4κ210

∫
B2 ∧ F4 ∧ F4

where we have also renamed some of the gauge fields to match the matter content of the string
theory. Note that the dilaton dependence has been absorbed into the definition of the fields in the
latter two terms, but is definitely still present.

Among other things, this shows that the type IIA string is really the dimensional reduction of an
eleven dimensional theory. This eleventh dimension is hidden in perturbation theory but begins to
reveal itself at strong coupling. This is the starting point of M-Theory32.

32This is also why we expect d = 11 supergravity to be the low-energy limit of M-theory.
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5.2. The Type IIB Superstring. The main problem in constructing the low energy limit of the
type IIB theory is that the self dual field strength F5 prevents us from formulating the low-energy
action in a manifestly covariant form. The problem stems from the fact that a term of the form∫
d10x |F5|2 does not take the self-duality into account and hence describes twice the number of

actual, propagating degrees of freedom. The introduction of a Lagrange multiplier turns out to
not help the situation either (the Lagrange multiplier itself ends up reintroducing these same ex-
traneous degrees of freedom). The two usual options here are to either focus instead on the field
equations33 (which are manifestly covariant) or to write down a covariant action which needs to be
supplemented by a self-duality constraint. There is a more modern third option, the PST (Pasti-
Sorokin-Tonin) formalism, which introduces an auxiliary scalar field and a compensating gauge
symmetry to give a theory which accounts for the self-duality constraint and is diffeomorphism
invariant in all but one directions (up to some topological considerations).

The most remarkable feature of the type IIB SUGRA approximation is an emergent global SL(2,R)
symmetry which acts on the two form potentials as a doublet. This has been seen to actually ascend
to an exact SL(2,Z) symmetry of the full string theory.

5.3. The Type I Superstring. The massless closed string sector of the type I theory descends
to d = 10, N = 1 SUGRA and the massless open string sector to d = 10, N = 1 super Yang-Mills
with gauge group SO(32). The low energy effective action of the theory (we restrict ourselves to
the Bosonic sector for simplicity) simply describes the interaction of these two supermultiplets to
leading order in α′:

(20) SI, Eff =
1

2κ210

∫
d10

√
−g
(
e−2Φ(R+ 4 ∂µΦ∂

µΦ)− 1

2

∣∣F ′
3

∣∣2 − κ2

g2
e−ΦTr |F2|2

)
where F2 is the Yang-Mills field strength and F ′

3 a three form with nonstandard Bianchi identity,
built from a type I gauge field and a Chern-Simons term. The first two terms come from a spherical
worldsheet (χ = −2) while the last term comes from a disk worldsheet (χ = −1).

The parameter g is related to the d = 10 Yang-Mills coupling gYM via
g2YM
4π

= gs
g2

4π
= gs(2π`s)

6

This stems from the fact that gYM is an open string coupling, and so it is proportional to √
gs,

which in turn is a consequence of the fact that open strings couple to worldsheet boundaries (while
closed strings couple to interior points). We can also figure out low energy contributions beyond
O(α′) through a careful study of anomaly cancellation.

5.4. The Heterotic Superstring. For the massless part of the Heterotic superstring spectrum,
the only difference between the SO(32) and E8×E8 theory is the exchange of gauge groups. Since
there is no vector representation of E8 × E8, the actions will differ by a normalization, which we
can repair by appropriately normalizing the trace of the Yang-Mills field strength in both cases.The
low-energy effective action for the heterotic superstring is thus given for both gauge groups by

(21) SHet, Eff =
1

2κ210

∫
d10x

√
−ge−2Φ

(
R+ 4 ∂µΦ∂

µΦ− 1

2

∣∣H ′
3

∣∣2 − κ2

30g2
Tr |F2|2

)
this is quite similar to the action for the type I string, the uniform dilaton dependence stemming
from the absence of open strings or RR fields. Because of the high degree of supersymmetry,
however, this can only differ from the type I action by a field redefinition. If we define

GI = e−ΦhGh, ΦI = −Φh, F ′
3,I = H ′

3,h, and A1,I = A1,h

33and corresponding SUSY transformations
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we recover the action (20). The only difference is in the relation between κ10, g10, and α′.

5.5. M-Theory. While there are no chiral spinors in d = 11, d = 11 SUGRA allows for chiral
matter within the context of string theory by exploiting the presence of various Dp-branes. We can
also gain emergent chirality through compactification. Since d = 11 SUGRA is nonrenormalizable,
it is important to try to figure out, and keep track of, which of the infinite number of counterterms
are necessary to account for at low energies. This is done by matching d = 11 SUGRA to M-theory
at low energies by exploiting various dualities between M-theory and the superstring theories. For
example, this tells us that in a flat R10,1 background, there are important R4 terms to account for.

6. Conclusion

We have seen that string theory makes bold predictions for gravity beyond general relativity, while
still begging for a deeper development and better understanding of some of its own gravitational as-
pects. Furthermore, we have seen that the superstring theories, in part through their low energy su-
pergravity approximations, seem to suggest descent from a theory shrouded in mystery—M-theory.
These issues—including those of background independence, gravitational string phenomenology,
stringy geometry, and the search for M-theory—provide with exciting challenges for the future and
guidance in our ongoing struggle to understand Nature.
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Appendix A. Supersymmetry

A.1. The Origins of Supersymmetry. The Standard Model paints a wildly accurate picture of
reality at low energies and vanishing curvature, but it is not perfect. In order to elucidate some
of the features of the Standard Model that could not be explained within its own framework, and,
even more importantly, to understand features of reality that the Standard Model simply does not
explain, Physicists began to look to physics beyond the Standard Model itself.

One way to discover new physics and unify existing theories is by examining the possible symmetries
of (the S-matrix of) our universe and then breaking the ones that we don’t see. By the 1960’s we
were aware of two main types of symmetries–spacetime symmetries generated by the Poincaré
algebra so(1, d−1)nRd, and internal symmetries such as the gauge symmetries of particle physics.
We might expect to obtain new symmetries by combining these, but we hit a roadblock: the
Coleman-Mandula Theorem

Theorem A.1 (Coleman-Mandula). In a theory of 0-branes with a mass gap and non-trivial
scattering in d > 1 + 1, the only possible conserved tensors are the generators Pµ and Jµν of
the Poincaré group and scalar internal symmetry charges which commute with Pµ and Jµν . In
particular, the only possible Lie algebras of symmetries of the S-matrix are direct products of the
Poincaré group with internal symmetry groups—we cannot mix the two.

We may, however, find a loophole. We consider adding new symmetry generators that are, rather
than Lie-Algebra valued tensors, graded Lie-Algebra valued spinors. This is supersymmetry.

A.2. The Supersymmetry Algebra. Consider a Z2-graded algebra A = AF ⊕ AB where the
elements of AF have their algebraic properties defined via anticommutators (e.g. like Fermionic
fields) while the elements of AB have their algebraic properties defined via commutators (e.g. like
Bosonic fields). AF (resp. AB) is closed under anticommutation (resp. commutation), whereas the
commutator of an element of AF with an element of AB will yield an element of AF . AF is called
the supersymmetry algebra and A is called the superalgebra.

The elements of AF are operator-valued spinors (self-adjoint since we want a unitary representation)
Qi

α and Q̄i
α̇ (i = 1, . . .N ) which transform as elements of the

(
1
2 , 0
)

and
(
0, 12
)

representations of
SL(2,C) respectively, e.g.[

Pµ, Q
i
α

]
= 0 =

[
Pµ, Q̄

i
α̇

] [
Jµν , Q

j
α

]
= i(σµν)

β
α Qj

β

[
Jµν , Q̄

j
α̇

]
= i(σµν)

α̇
β̇
Q̄β̇j

Thus the anticommutator of these must transform as an element of the
(
1
2 ,

1
2

)
representation of

SL(2,C). We guess that

(22)
{
Qi

α, Q̄
j

β̇

}
= 2σµ

αβ̇
Pµ δ

ij

since this is the only natural way to use our natural d-vector Pµ and get the correct spinor indices
and transformation properties, up to choice of normalization. Note that we may reformulate SUSY
in terms of Dirac spinors with e.g.

(23)
{
Qi

α,
(
Qβj

)†}
= −2Pµγ

µ
αβ δ

ijγ0

(the factor of γ0 appears since we should really be using the Dirac adjoint). For N > 1, our theory
also includes central charges Z [ij] which commute with the elements of the supersymmetry and
are defined by {

Qi
α, Q

j
β

}
= εαβZ

ij
{
Q̄i

α̇, Q̄
j

β̇

}
= εα̇β̇ (Z

ij)∗

This is the extended SUSY algebra, which is the most general graded Lie algebra that respects
the symmetries of the S-matrix.
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A.3. Supermultiplets. Basic particle states transform as unitary representations of just the d+1
dimensional Poincaré group, which means that they can be intermixed by supersymmetry trans-
formations. Grouping these particles into representations of the whole superalgebra gives us su-
permultiplets.

Recalling that [QA
α , Pµ] = 0, we see that the elements of a supermultiplet all share a common

mass. They do not, however, all share the same spin—their spins differ by factors of 1
2 (since the

SUSY operators themselves carry spin). We also note that the Hamiltonian is positive definite in
supersymmetry, which can be seen by taking the trace of either (22) or (23), giving

P 0 = H =
1

4

(
QQ† +Q†Q

)
≥ 0

which in turn implies that
〈 0 |H | 0 〉 = 0

In particular, supersymmetry (should it exist) must be broken in any universe with a nonzero vac-
cuum energy.

Some simple algebra gives [
J12, Q

A
1

]
=

1

2
QA

1

[
J12, Q

A
2

]
= −1

2
QA

2

and similar for the conjugate spinor operators, so the supersymmetry operators do indeed send
Fermions to Bosons and vice versa. We can also prove, using the vanishing of the trace of the
operator (−1)NF , that supermultiplets always contain the same number of Fermions as Bosons.

A.3.1. Massless Supermultiplets. For massless supermultiplets, we consider the lightlike reference
frame Pµ = (−E, 0, . . . , 0, E). In this frame the algebra becomes{

Qi
α, Q̄

j

β̇

}
= 2

(
2E 0
0 0

)
δij

We may define creation and annihilation operators

ai :=
1

2
√
E
Qi

1 a†j :=
1

2
√
E
Q̄1̇j

which lower and raise the helicity respectively with ground state (of helicity λ) given by the Clifford
vacuum |Ω 〉λ, so that all states in the massless Fock space are given as

|Ω 〉(n)λ+n
2
,j1,...,jn

:=
1√
n!
a†jn . . . a

†
j1

|Ω 〉λ

There are
(N
n

)
states of each helicity λ−n/2, and so we have a 2N -dimensional representation with

2N−1 each of Bosons and Fermions. The highest helicity possible is λ+N/2. In order to preserve
CPT symmetry, since CPT reverses the helicity, we consider reducible representations given by
direct sums {

| s1 〉 , . . . ,
∣∣ sλ+N/2

〉}
⊕
{∣∣−sλ+N/2

〉
, . . . , | −s1 〉

}
A.3.2. Massive Supermultiplets. For massive supermultiplets of massM , in the rest frame Pµ = (−M, 0, 0, . . . ),
the supersymmetry algebra (in terms of Dirac fermions) takes the form{

Qi
α, Q

†
βj

}
= 2M δαβ̇ δ

i
j{

Qi
α, Q

j
β

}
= εαβ Z

ij

{(
Qi

α

)†
,
(
Qj

β

)†}
= εαβ (Z

ij)∗
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We consider the even case (the odd case is analogous). Since the central charges commute with the
elements of the above algebra, we may choose a basis that diagonalizes them, and further apply a
unitary transformation that take them to canonical antisymmetric block diagonal form

Zij =


ε⊗D N even(
ε⊗D 0

0 0

)
N odd

where D is a diagonal matrix with eigenvalues Zi. We decompose our indices as i = (a,m),
j = (b, n) a, b = 1, 2 and m,n = 1, . . . ,N/2 (there should be no confusion with worldsheet or
Lorentz indices). After our transformations, the algebra takes the from{

Qan
α ,
(
Qbm

β

)†}
= 2M δαβ δ

ab δmn

{
Qam

α , Qbn
β

}
= εαβ ε

ab δmnZn

{
(Qam

α )† ,
(
Qbn

β

)†}
= εαβ ε

ab δmnZ∗
n

We define annihilation operators

anα =
1√
2

(
Q1m

α + εαβ
(
Q2m

β

)†)
bnα =

1√
2

(
Q1m

α − εαβ
(
Q2m

β

)†)
which satisfy the (anti)commutation relations{

anα,
(
amβ
)†}

= (2M + Zn)δ
nmδαβ

{
bnα,
(
bmβ
)†}

= (2m− Zn)δ
nmδαβ

We have that Zn ≤ 2M ∀n. If a subset Zi = 2M , 1 ≤ i ≤ r, the corresponding bi operators must
vanish, leaving us with a Clifford algebra of 2(N − r) creation and annihilation operators. The
highest helicity possible is λ+N .

A.4. Superfields and Superspace. The superspace formalism is a framework for field theory in
which supersymmetry is manifest. It will aid us in constructing spinor (and other field) representa-
tions of the superalgebra and in defining supersymmetric quantum field theories, in particular the
superconformal worldsheet field theories which describe the superstrings. For simplicity, we only
consider the case N = 1.

Superspace is an extension of Minkowski space which includes as coordinates internal anticom-
muting/Fermionic parameters (θα, θ̄α̇) (compare to xµ which are commuting/Bosonic) so that we
may exponentiate our superalgebra to get a Lie group

G(x, θ, θ̄) = exp
[
−i
(
xµPµ + θαQα + θ̄α̇Q̄α̇

)]
Note that superspace has additional tangent vectors

∂

∂θα
∂

∂θ̄α̇

If we analyze an infinitesimal shift by (0, ξ, ξ), i.e. look the group element G(0, ξ, ξ)G(x, θ, θ̄), using
the Baker-Campbell-Hausdorff formula, we find that the elements of the supersymmetry algebra
manifest themselves as the generators of infinitesimal θ and θ̄ translations in superspace:

Qα =
∂

∂θα
− iσµαα̇θ̄

α̇∂µ Q̄α̇ =
∂

∂θ̄α̇
− iθασµ

αβ̇
εβ̇α̇∂µ

Repeating the above for G(x, θ, θ̄)G(0, ξ, ξ) gives us another pair of differential operators

(24) Dα = − ∂

∂θα
+ iσµαα̇θ̄

α̇∂µ D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ
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which obey the algebra{
Dα, D̄α̇

}
= 2iσµαα̇∂µ {Dα, Dβ} =

{
D̄α̇, D̄β̇

}
= 0

(note that this is the same as the SUSY algebra but with an extra minus sign) and anticommute
with the SUSY generators.

A superfield is simply an element of a representation of the supersymmetry algebra that is a field
over superspace (contrast the situation of a regular quantum field, which is a representation of the
Poincaré algebra over Minkowski space). Superfields may be expanded into components as
Φ(x, θ, θ̄) = φ(x)+θ ψ(x)+ θ̄ χ(x)+θθm(x)+ θ̄θ̄ n(x)+θσµθ̄ vµ(x)+θθθ̄ λ̄(x)+ θ̄θ̄ θρ(x)+θθθ̄θ̄ d(x)

This works since all other components vanish by the anticommutativity of the superspace coordi-
nates. We may find the transformation properties of the component fields by matching in powers
of the superspace coordinates with the transformation of Φ. Note that superfields form reducible
representations in general, and so, in order to obtain irreducible representations, we must impose
certain constraints to project out some of the components (i.e. ), in a way that doesn’t yield bound-
ary conditions (which would limit the range of x). It just so happens that we only require two
types of superfields (i.e. two types of constraints) to construct all supersymmetric renormalizable
Lagrangians: chiral superfields given by D̄Φ = 0 and vector superfields given by V = V †.
These are studied in detail in [19].

Appendix B. Supergravity

B.1. Why Supergravity? Supergravity is a theory which unifies general relativity with super-
symmetric matter fields. This is in one shot both a theory of physics beyond the standard model,
and an extension of general relativity, which is riddled with its own problems (e.g. singularities).
Supergravity is a very useful tool in supersymmetric phenomenology (we often wish to consider the
MSSM coupled to N = 1 supergravity), a valuable technical tool (it is used, e.g. in Witten’s proof
of the positive energy theorem), and, as we will see in this paper, a reliable low-energy effecive
approximation to the superstring theories and even M-theory. Supergravity grand unified theories
also explain the origin of the tachyonic mass term of the Higgs.

By adding more symmetry, there is some hope that supergravity cancels some of the divergences
of the naïve linearized gravity theory (there is some belief that N = 8 supergravity may even be
finite). Most of all, supergravity is necessary in order to turn supersymmetry into a gauge theory.
In fact, supergravity is the gauge theory of local supersymmetry. We see this as follows:

Consider two consecutive infinitesimal global supersymmetric transformations of a Boson field
[B] = 1 with superpartner [F ] = 3/2:

δ1B ∼ ε̄1 F δ2F ∼ ε 2 ∂B

by dimensional arguments, where ε is an anticommuting Fermionic parameter with [ε] = −1/2 and
the derivative in the second transformation is required to match dimensionality. This implies, then,
that two supersymmetry transformations yield a spacetime translation:

{δ1, δ2}B ∼ ε̄2γ
µε1︸ ︷︷ ︸

aµ

∂µB

which makes sense since supersymmetry extends Poincaré symmetry, e.g.
{Q, Q̄} = 2σµPµ

Promoting ε to a local paramter ε(x) gives us a spacetime dependent translations aµ(x)∂µ, which
we recognize as an infinitesimal diffeomorphism. Thus local supersymmetry is simply the gauge
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theory of diffeomorphism—but this is gravity.

Supersymmetry, as constructed in Appendix A, is a global symmetry. We just found out that
if we would like to extend supersymmetry to a local symmetry, we must incorporate gravity to
mediate diffeomorphisms. We consider tackling this problem by extending Einstein gravity to
a supermanifold (i.e. curved superspace) with coordinates zA = (xµ, θα, θ̄α̇). Recall that the
components of chiral supermultiplets (φi, ψi, Fi) (where φi is a scalar, ψi Weyl spinors, and Fi

auxiliary scalars) are obtained as coefficients in the expansion of our superfields Φi(x, θ, θ̄). We
obtain a new metric gAB which is invariant under superspace diffeomorphisms

zA → zA + ξA(z)

(note that this includes both spacetime diffeomorphisms and and local supersymmetry transforma-
tions) and contains both the vielbeins and a spin-3/2 field called the gravitino (the superpartner
of the graviton). An excellent coverage of geometry on supermanifolds can be found in [12].

B.2. An Example: d = 4, N = 1 Supergravity. This is the simplest example of a supergravity
theory, but also has use in practice, as the simplest way to couple the (Minimally Supersymmetric)
Standard Model to gravity (besides, of course, the most naïve way). This will give us an area to
develop important terminology and see some general features in action.

In 4d superspace, the most general renormalizable (globally) supersymmetric Lagrangian involving
only chiral superfields (ignoring linear terms since these will be forbidden by gauge invariance for
non-neutral fields) is given by

(25) Lglobal =

∫
d2θ d2θ̄Φ†

iΦi +

[∫
d2θ

(
1

2
mijΦiΦj +

1

3
YijkΦiΦjΦk

)
+ h.c.

]
Where m and Y are totally symmetric in their indices. We rewrite this for future use as

(26) Lglobal =

∫
d2θ

[
−1

8
D̄D̄Φ†

iΦi +
1

2
mijΦiΦj +

1

3
YijkΦiΦjΦk

]
+ h.c.

where D̄ is given by (24) and we have used the identity∫
F (x, θ, θ̄) d2θ d2θ̄ = −1

4

∫
D̄D̄F (x, θ, θ̄) d2θ

To generalize this to the case of local supersymmetry mediated by supergravity, we first allow
our coordinates θα to generalize to tangent space coordinates Θa...

α (since we are adding curvature
to our supermanifold, it is nicer to retain our old machinery and simply work in an SL(2,C) n
R4-associated R3,1+4 superspace vector bundle generalizing the local Lorentz bundle of the previous
appendix (see Appendix C) and introduce an analog of the gravitational action eq. (30). We need
a supersymmetric generalization of the measure

|vol| =
∣∣e0 ∧ e1 ∧ e2 ∧ e3∣∣ = e d4x

(where we have defined e := det(eaµ) =
√
−g ) as well as the Ricci scalar R. These are given by the

chiral density superfield E (which generalizes e) and the superspace curvature superfield R (which
generalizes R) with components

E = (e,Ψµ, . . . ) R = (R,Ψµ, . . . )

where Ψµ is the gravitino, the spin-3/2 superpartner of the spin-2 gravition. The dots denote
auxiliary fields that arise as coefficients of the expansion of the superfields in powers of Θ and Θ̄.
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The Lagrangian for the free supergravity field is thus given by

Lsg = −6

∫
d2Θ E R

Where the essential changes came from replacing coordinates θ → Θ and generalizing the volume
form d2θ → d2Θ2 E . We now couple our superfields to gravity by sending

−1

4
D̄D̄ → −1

4

(
D̄D̄ − 8R

)
where D and D̄ are obtained from (24) via minimal substitution ∂µ → ∇̂µ where ∇̂ is the su-
persymmetric covariant derivative (so called because it is a function of the supersymmetric spin
connection, which in turn is now a function of the entire supergravity multiplet rather than just
the vielbein). Generalizing the global chiral Lagrangian (26) and adding the pure supergravity
Lagrangian we get

(27) Llocal =

∫
d2Θ2E

[
−1

8

(
D̄D̄ − 8R

)
Ω(Φi,Φ

†
i ) +W (Φi)

]
+ h.c.

where

Ω(Φi,Φ
†
i ) := Φ†

iΦi − 3

is the superspace kinetic energy and

W (Φi) =
1

2
mijΦiΦj +

1

3
YijkΦiΦjΦk

the superpotential. After eliminating non-dynamical auxiliary fields and some rescaling and
redefinition, we may define a component Lagrangian in terms of the physical fields φ, ψ, emµ, and
Ψµ and a real function, the Kähler potential

K(f, f∗) := −3 ln

(
−Ω(f, f∗)

3

)
from which we can extract e.g. the kinetic energies of the scalars as

∂2K

∂φi ∂φ∗j
∂µφi ∂

µφ∗j

The Lagrangian has many higher order interaction terms, including nonrenormalizable terms. This
Lagrangian has a natural interpretation in the language of Kähler geometry which is described in
Appendix A of [5].

We finish up by noting that, as supergravity is nonrenormalizable, we should interest ourselves with
starting not just from the most general renormalizable global chiral Lagrangian (25), but the most
general possible Lagrangian that can be built from chiral superfields

(28) Lglobal, non-renormalizable =

∫
d2θ d2θ̄ K(Φi,Φ

†
j) +

[
d2θW (Φi) + h.c.

]
where now K and W are arbitrary vector and chiral superfields respectively, with power series
expansions in terms of the chiral superfields Φi.
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B.2.1. Coupling to Matter. We want to obtain a complete theory of supersymmetric chiral matter
coupled to both pure supergravity and Yang-Mills internal gauge fields.

Let us forget about gravity and local supersymmetry briefly to consider the construction of a renor-
malizable gauge invariant supersymmetric Lagrangian. We impose gauge invariance on the general
renormalizable (globally) supersymmetric chiral Lagrangian (25) by introducing a vector superfield
V := 2gi T

iV j , where T i are the generators of the gauge group G, V j the gauge supervector fields
(so j is here a g Lie algebra index), and gi the couplings, via

Lglobal, gauge =

∫
d2θ d2θ̄Φ†

i exp[V ] Φi +

[∫
d2θ

(
1

2
mijΦiΦj +

1

3
YijkΦiΦjΦk

)
+ h.c.

]
where the Φi now transform as (possibly different) representations of G and the components of
V i include the gauge vector Bosons (transforming in the adjoint representation), their Majorana
spinor superpartners, and auxiliary scalar fields. We define the (chiral spinor) gauge field strength
superfield

Fα = −1

4
D̄D̄ exp[−V ]Dα exp[V ]

so that the Yang-Mills kinetic term is given by

LYM =
1

16

∫
d2θ F iαFiα + h.c.

Since we again disregard renormalizibility as soon as we incorporate supergravity, we can generalize
above renormalizable super Yang-Mills theory to a nonrenormalizable super Yang-Mills theory by
analogy with (28):

LYM, non-renormalizable =

∫
d2θ d2θ̄

[
K(Φi,Φ

†
j) + C(Φi,Φ

†
j , V )

]
+

[∫
d2θW (Φi) + h.c.

]
+

1

16

∫
d2θ fjk(Φi)F

jF k

where C is a counterterm necessary for maintaining gauge invariance and fij an arbitrary analytic
function of the chiral superfields (which would be just δij in the renormalizable case). Finally,
sending Fα → Fα, the curved-space field strength superfield given by

Fα = −1

4

(
D̄ D̄ − 8R

)
exp[−V ]Dα exp[V ]

we obtain the d = 4, N = 1 supergravity Yang Mills Lagrangian
LSGYM

=

∫
d2Θ2E

[
3

8

(
D̄D̄ − 8R

)
exp

{
−1

3

[
K(Φi,Φ

†
j) + C(Φi,Φ

†
j , V )

]}
+

1

16
fjk(Φi)F

jF k +W (Φi)

]
+ h.c.

Letting G = SU(3)c × SU(2)L × U(1)Y and letting the matter content be that of the MSSM gives
us the simplest way to look at gravity coupled to matter as we know it.

Appendix C. Einstein Meets Dirac: Vielbeins and The Spin Connection

This appendix is purely a fun aside about the technicalities that are involved with coupling Fermions
to gravity. This is an important issue, not just because it is essential to string theory, but even
classically!

The gauge group of general relativity is the group of all diffeomorphisms of the spacetime manifold.
In the tangent bundle (from which we construct all the tensors of our theory), this manifests itself
as the general linear group GL(d,R), which does not permit a spinor representation. However
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something must be done about this—any observer carries with her a local Lorentz frame (which
essentially manifests the idea that the tangent space at each point is just flat Minkowski spacetimes)
and should locally see flat spacetime physics, including spinors. To make this idea precise, we
consider (where defined) an orthonormal basis of sections of the tangent bundle (doing this along a
particular worldline is what we mean by an observer’s local Lorentz frame), the vielbeins (German
for “many legs” since there are two relevant types of indices) em, defined by

(29) gµν e
µ

m e ν
n = ηmn em = e µ

m

∂

∂xµ

(note that Greek indices are spacetime indices, i.e. indices associated to a coordinate basis that are
acted on by general coordinate transformations, whereas the Latin indices are frame indices which
are acted upon by local Lorentz transformations), give us a Minkowski-vector bundle structure
which can be associated to an O(d− 1, 1) principle bundle (i.e. the Latin indices transform under
O(3, 1)). We may then double-cover O(d − 1, 1) by Spin(d-1,1) (e.g. for O(3, 1), by SL(2,C)) to
recover spinor fields in the tangent space as projective unitary representations! Manifolds where we
can do this globally are said to admit a spin structure.

Raising the Lorentz indices on both sides of (29), we find that
emνe

ν
n = δmn

which tells us the important fact that the dual basis of the vielbeins is simply the vielbeins with
the indices switched up/down. In particular we get that

gµν = emµe
n
ν ηmn

which is why they are sometimes called the “square root of the metric”.

Note that we can translate vector components between these bases via

V µ ∂

∂xµ
= V mem = V me µ

a

∂

∂xµ
=⇒ V µ = V me µ

a =⇒ V m = emµV
µ

The way we couple spinors to gravity is by the spin connection ω m
µ n, defined by

∇µe
m
ν = ω m

µ n e
n
ν i.e. ∇em = ωm

n ∧ en

In the same way that the Christoffel connection is the gauge field corresponding to diffeomorphisms
of the spacetime manifold, we may view ω as the gauge field corresponding to local Lorentz transfor-
mations Λm

n(x) in the adjoint representation acting on the tangent bundle (note that ωmn = −ωnm

since we are representing local Lorentz transformations, which gives us metric compatibility for
free). Recalling that34 Σmn := 1

4 [γm, γn] is the generator of the Lorentz group in the Dirac spinor
representation, and using the standard covariant derivative expansion Dµψ = ∂µψ + Aa

µTaψ, we
must have that, for ∇ acting on a (Dirac) spinor field ψ

∇µψ = ∂µψ +
1

2
ω mn
µ Σmnψ

Since the vielbein already contain all the degrees of freedom of gravity (see e.g. [11]), we see that
ω must be completely constrained in form by the other ingredients of our theory. We fix the spin
connection by asserting that the vielbein have vanishing torsion, defined here via

Tm = dem +∇em = Dea − (contributions from matter gauge fields)
Note that this recovers standard general relativity from the more general Einstein-Cartan theory
(GR with nonvanishing torsion). It is interesting to note that one can consider the vielbeins as

34Here we are using the normalization of the generators such that an identity component Lorentz transformation
is written as ψ → exp

[
1
2
λmnΣ

mn
]
ψ.
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the gauge field corresponding to local translations and the torsion as their field strength; general
relativity is then seen to be the special case where the local translation gauge field is flat.

The field strength of the spin connection is the “flattened” Riemann tensor
Rm

n = dωm
n + ωm

l ∧ ωl
n

=⇒ R m
µν n = ∂µω

m
ν n − ∂νω

m
µ n + ω ml

µ ω l
ν n − ω m

ν lω
l

µ n = R ρ
µν σe

m
ρ e

σ
n

Note that both ωa
b and Ra

b take values in so(3, 1).

The spin connection also gives us a representation of the covariant derivative on the “frame”
representation of our vector fields:

∇µV
m = ∂µV

m + ω m
µ nV

n

and, in general, the spacetime covariant derivative acts via the formula

(∇µΦ)
i = ∂µΦ

i +
1

2
ω mn
µ (Σmn)

i
jΦ

j

where (Σmn)
i
j is the appropriate representation of the appropriate Lorentz group such that, under

an identity component transformation, Φ → exp
[
1
2λmnΣ

mn
]
Φ (in analogy with the spinor).

As a final point, note that in terms of the vielbein, the Einstein-Hilbert action is given by

(30) SEH =
1

16πG

∫
M
R m

µν n e
µ
m η

nl eνl︸ ︷︷ ︸
R

vol︷ ︸︸ ︷
e0 ∧ e1 ∧ e2 ∧ · · · ∧ ed−1
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