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This paper represents my attempt at making sense of the papers “Higher-form symmetries
and spontaneous symmetry breaking” by Ethan Lake and “Generalized Global Symmetries” by
Davide Gaiotto, Anton Kapustin, Nathan Seiberg, and Brian Willett.

1 Motivation

Higher-form symmetries are symmetries for which the charged objects are extended. A p-form
symmetry has p-dimensional charged objects– ordinary symmetries have charged particles, p =
0. My own motivation (as someone interested in CMT) for figuring out what these are about is
that its proponents claim that topological phases may be understood via a symmetry-breaking
paradigm in which the symmetries are higher-form. These papers are pretty advanced for my
background so I wasn’t able to fully grasp their arguments at an intuitive level, so instead I’ll go
through some of the basics of what higher-form symmetries are and a couple of classic theorems
lifted to higher forms.

2 Higher-form Symmetries: What are they?

One way you could express a higher-form symmetry is in the standard way that we express
symmetries of an action S. Say we have a p-form field ϕ; we could produce an action (for
concreteness, suppose)

S =

∫
dϕ ∧ ⋆dϕ

and say that any transformation ϕ → ϕ′ which leaves the equations of motion undisturbed is a
symmetry. But the way that we approached the problem of producing Poincaré-invariant actions
in the beginning of the course involved using knowledge about the symmetry group directly, so
we should first find a way to express the action of a symmetry group G on a field theory. Let’s
start by expressing a 0-form symmetry in a manner generalizable to the p-form case.

It turns out the best way to do this is by employing Noether’s theorem: associated to any
generator of a continuous symmetry there is a a d − 1-form conserved current j. Integrating
over this form on a codimension 1 manifold M yields the conserved charged

Q(M) =

∮
M

j.

We express the symmetry transformations operators associated with a manifold and a group
elements, Ug(M), obtained in the case of a continuous symmetry by exponentiating the charge
associated with j and M . That the symmetry group elements are group elements indicate that
these operators should obey a fusion rule:

Ug(M)Ug′(M) = Ug′′(M)
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when gg′ = g′′. Furthermore the dependence of Ug on M is only topological: the value of Ug

only changes under deformations of M when M crosses a charged object.
Everything above is slightly more fancy language for the pedestrian Gauss’s law: the charge

associated to any conserved current contained in some closed boundary is accountable entirely
through measuring how much goes in and out of the boundary; i.e., it’s conserved. Nothing
fancy or nontautological.

So how does it go through when we promote our zero-dimensional objects into extended
objects? The intuition is that a p-form symmetry acts on operators supported on p-dimensional
manifolds. Furthermore a symmetry with a nonanomalyous p-form symmetry can be coupled to
a background p + 1-form connection, just like how we can couple a 0-form U(1) gauge theory
to the 1-form vector potential Aµ.

For a p-form symmetry, Noether’s theorem now provides us a closed d−q−1-form current j
to be integrated over codimension p+1 manifolds M , obtaining Q(M) =

∮
M j and Uq(M) exactly

as before. We institute the fusion rule as before for g ∈ G, G our symmetry group.
We actually find something interesting about higher symmetries instantly: since any charge

operator is supported on a manifold of codimension > 1, any two charge operators can be
smoothly deformed so that Q1Q2 = Q2Q1 on a space of trivial topology. Hence the symmetry
group G for a higher symmetry can be nonabelian only if the underlying space has nontrivial
topology.

3 The Higher Nambu-Goldstone Theorem

Let’s say we have a p-form symmetry from which we obtain the current j. We can construct
the charge operator

Q(M) =

∫
M

⋆j.

And let O be a operator charged under a global p-form symmetry which is spontaneously broken,
ergo let O have a nonzero vacuum expectation value ⟨0|O|0⟩ ̸= 0.

Consider
C = ⟨0|[Q(M),O]|0⟩.

We want to choose M in such a way as to make C nonzero. To do this there is a trick: let
M ⊂ Σ where Σ is codimension 1 and let M̂ be the Poincaré dual of M with respect to Σ. Then

Q(M) =

∫
Σ
⋆j ∧ M̂.

On Σ, ⋆j ∧ M̂ is just a function (i.e. a 0-form) so we can proceed with a calculation of C as if
it’s a typical calculation in a Hilbert space:

C =
∑
n

∫
Σ
dd−1x

(
⟨0|(⋆j ∧ M̂)|n⟩⟨n|O|0⟩ − ⟨0|O|n⟩⟨n|(⋆j ∧ M̂)|0⟩

)
=

∑
n

(2π)d−1δd−1(p)
(
⟨0|(⋆j ∧ M̂)|n⟩⟨n|O|0⟩e−iωnt − ⟨0|O|n⟩⟨n|(⋆j ∧ M̂)|0⟩eiωnt

)
,

letting t = x0 point in the direction normal to Σ.
Our goal is to demonstrate the existence of Goldstone modes. I.e, we’d like to show that the

spectrum is gapless at zero momentum, or that we have states satisfying ωn = 0 when p = 0.
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To this end, we’ll show that the right-hand side of the equation above, despite carrying explicit
time dependence, is independent of t.

We differentiate with respect to t and use Poincaré duality to turn the wedge product with
M̂ into an integral over M :

∂tC =

∫
M
⟨0|[∂t ⋆ j,O]|0⟩.

Current conservation imposes the conservation equation on j that ∂tj+ divj = 0, up to some
fancy indices since j is a form. Equivalently, in fancy terms,

∂tC = −
∫
∂M⊂∂Σ

⟨0|[⋆ΣJ,O]|0⟩.

We can choose O such that it is supported only off ∂M , making the integral above vanish
entirely.

So we can choose C to be nonzero such that ∂tC vanishes even when it has explicit time
dependence in the exponential factors. Our spectrum must then be gapless at zero momentum
(ωn = 0) and we have Goldstone modes, as desired. But what are the Goldstone modes?

The Goldstone modes are those fields which shift by the addition of a “constant” factor under
the action of the symmetry group. For p = 0, this is the shift ϕ → ϕ + c. For p > 0, this is
A → A+ λ for λ a flat connection.

Something pretty cool about the earlier fact that higher-form symmetries must all be Abelian
is that it greatly simplifies the kinds of infrared effective actions we can write down if the
Goldstones are the only massless fields. All we can do is write the kinetic (Maxwell) action

S = − 1

2g2

∫
F ∧ ⋆F

for which F = dA.
(NB: Under some circumstances can write a Chern-Simons or θ term.)

4 The Higher Coleman-Mermin-Wagner Theorem

Recall that in quantum statistical mechanics, continuous symmetries cannot be spontaneously
broken at finite temperature for short-ranged systems in dimensions less than 2. The intuition
is that the resulting massless Goldstone bosons will have infrared divergence in their correlation
functions when d ≤ 2.

Here we’ll prove that continuous p-form symmetries in d dimensions are not spontaneously
broken for p ≥ d− 2.

The scheme is to calculate the the expectation values of Wilson membranes

WC = exp
(
i

∫
C
A

)
charged under p-form symmetries. We’ll find that these expectation values have log IR divere-
gence for p ≥ d− 2.

First we write

WC = exp
(
i

∫
X
A ∧ Ĉ

)
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from which, after some heavy-lifting involving and ghosts the expectation value under our
previous Maxwell action will be given by

⟨WC⟩ =
∫
X
DADµghosts exp

[
−
(∫

X

1

2g2
F ∧ ⋆F − i A ∧ Ĉ

)
− Sgauge − Sghosts

]
where Sgauge is a gauge-fixing term and Sghosts is a ghost term Furthermore we can write
A = Aclassical+Aq , where Aclassical satisfies the equations of motion d

†dAclassical = 0 and the fields
satisfy the boundary conditions

Aclassical|∂X = A|∂X , Aq|∂X = 0.

Imposing these conditions on the field F = dA lets it all shake out to (sans ghosts)

S = S[Aclassical] +
1

2g2

∫
X
Aq ∧ ⋆d†dAq.

This can be further gauge fixed by averaging over all co-exact f such that d†A−f = 0 to obtain

S = S[Aclassical] +
1

2g2

∫
X
Aq ∧ ⋆

(
d†d+

1

α
dd†

)
Aq

where from now on we’ll let
(
d†d+ 1

αdd
†) = ∆ for brevity.

Going back to our expectation value, we can now write

⟨WC⟩ ∼
∫
DA e−S[Aclassical] exp

[
−
∫
X
Aq ∧

(
1

2g2
⋆∆Aq − iĈ

)]
.

The term e−S[Aclassical] is contant with respect to C so we can ignore it. We can also eliminate
the Aq ∧ Ĉ coupling with the gauge transformation

Aq → Aq − ig2∆−1 ⋆ Ĉ.

Effecting this transformation pulls out a Gaussian integral on Aq which resolves to
1/
√
det(d†d+ dd†). Like e−S[Aclassical], this doesn’t depend on C so we can again ignore it to write

⟨WC⟩ ∼ exp
(
−1

2
g2

∫
Ĉ ∧ ⋆∆−1Ĉ

)
.

Calling ∆−1 the “propagator” D as well as choosing α = 1, we can squint a little to see that

D(k) ∼ 1

k2
.

Now let’s take C to be a copy of Rp embedded in Rd. As usual the universe is just a box
with side length L getting really big.

⟨WC⟩ ∼ exp
(
−1

2
g2

∫
C

∫
C
dpx ∧ dpy D(x− y)

)
= exp

(
−1

2
g2Lp

∫
C
dpx

∫
ddk
(2π)d

eikx
1

k2

)
= exp

(
−1

2
g2Lp

∫
dd−pk

(2π)d−p

1

k2⊥

)
.
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The longitudinal modes along the brane are integrated out and do not matter for symmetry
breaking considerations. The renormalization

W → Wexp
(
ic

∫
C
dpx

)
will regulate the integral in the UV with some appropriate momentum cutoff. However, the IR
log-divergence of the integral above persists for all p ≥ d− 2 and tells us that for such theories
⟨WC⟩ → 0 as L → ∞. Ergo, the symmetry is unbroken.
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