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Abstract

We examine the correspondence between 2+1 dimensional pure Chern-Simons gauge

theories with a semi simple, compact gauge group and 1+1 dimensional Wess-Zumino-

Witten (WZW) conformal field theories. We first introduce WZW models as conformal

field theories with an additional symmetry group described by an algebra of current

operators. The operator product expansions and the stress tensor of the theory are

calculated and compared to those of a conventional CFT. We then introduce the clas-

sical Chern-Simons action, quantize it by imposing the Gauss law constraint, and show

that the physical wave functionals satisfying the constraint correspond exactly to the

path integral of the WZW action with the Chern-Simons gauge field A as a source.

This correspondence is the core of the relationship between CS and WZW theories.

We go on to compute WZW current correlators as well as Chern-Simons Wilson lines.

The latter are shown to correspond to primary field insertions in the WZW generating

functional.

1 Introduction

Since the mid 1990’s, the Holographic Principle has been driving much of the inquiry

in theoretical physics. It’s realization in the AdS/CFT conjecture allows us to relate

strongly coupled conformal field theories in the large-N limit to theories of semiclassical

gravity in one dimension higher. In this paper we will explore a predecessor to the mod-

ern picture of holography. Namely, we will see that Chern-Simons theories quantized

on closed manifolds can be described exactly by the path integral of a WZW theory

in one less dimension. Though this is an exact correspondence, whereas AdS/CFT

requires c, the central charge, of the boundary CFT to be large, it is in a similar spirit,

and could be used to motivate further study in holography.
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2 Wess-Zumino-Witten Theories

Suppose we want to write down a conformal field theory with a global symmetry

under some Lie Group G (we will restrict ourselves to compact, semi simple groups in

this paper). Classically, this means our action should be a scalar under G. We have

already seen (e.g. in Polchinski ch. 2) how a nonlinear sigma model of a noncompact

scalar boson Xµ has a manifest symmetry under translations of the field values, Xµ →
Xµ + δXµ.

In searching for higher symmetry, we could naively extend the NLSM to a bosonic

field taking values in a unitary representation of our group G. Call this field g(z). Our

first pass at writing a G-invariant action is thus

S0 =
1

4λ2

∫
M
d2xTr(∂µg∂

µg−1)

where the trace is over the matrix indices in the algebra. M is a compact 2D

manifold.

The action S0 is indeed conformally invariant classically (λ is dimensionless). How-

ever, it is possible to add marginally relevant perturbations to the theory and get a

nonzero β-function out the other side, indicating that the scale-invariance is broken

quantum mechanically.

On top of the non-trivial RG flow, S0 fails to produce separately conserved Kac-

Moody currents. Our conserved current is Jµ = g−1∂µg, and one can easily check that

for a nonabelian algebra, the holomorphic and anti holomorphic part of the current are

only conserved together, not independently. It turns out that currents of the following

form

Jz = ∂zgg
−1

Jz̄ = g−1∂z̄g

do have the desired property. We will thus augment our action by another term

that will initially seem arbitrary, but will make sense in hindsight. The new term is

the Wess-Zumino (WZ) term (Witten gets credit for adding it to the NLSM action).

Our total action is now

S = S0 + kΓ

where

Γ[g] =
i

24π

∫
B
d3xεµνηTr(g

−1∂µgg−1∂νgg−1∂ηg)

where B is a 3D manifold with M as its boundary and k is a constant that will

be fixed shortly. It seems odd that we are adding integrals over manifolds of different
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dimension, but we can make sense of this in two ways. First, we can observe that under

the transformation g → g + δg, the WZ term’s variation is a total derivative, and can

thus be written as an integral over M

δΓ =
i

8π

∫
M
d2xεµνTr(g

−1δg∂µ(g−1∂νg))

Mathematically, the WZ term tells us about the third homotopy class, π3(G), of

the map g : B → G. Thus it is always an integer (since we have restricted ourselves to

compact, semi simple groups, for which π3(G) = Z). For our path integral to be gauge

invariant, k must therefore be quantized as well.

One important identity that the full WZW action satisfies is the Polyakov-Wiegmann

identity

S[gh−1] = S[g] + S[h−1] +
k

2π

∫
d2zTr(g−1∂z̄gh

−1∂zh)

Which means that our action transforms as a 1-cocycle, indicating the presence of

a projective representation of our gauge group. This is the basic root of why the WZW

action produces the Kac-Moody current algebra.

The upshot of adding this new term can be seen from the new equation of motion:

∂µ(g−1∂µg) +
ikλ2

4π
εµν∂

µ(g−1∂νg) = 0

which becomes the following in complex coordinates:

(
1 +

kλ2

4π

)
∂z(g

−1∂z̄g) +
(
1− kλ2

4π

)
∂z̄(g

−1∂zg) = 0

For k = 4π
λ2

and k = −4π
λ2

we have two separate conservation laws for two separate

currents. It appears we have found our Kac-Moody currents! Indeed, the two solu-

tions correspond to IR fixed points of the NLSM, and flowing away from them yields

asymptotically free theories. Normalizing the currents, we have

J(z) = −k∂zgg−1

J̄(z̄) = kg−1∂z̄g

Written as a sum of Lie algebra generators T a the holomorphic part of the current

is

J =
∑
a

JaT a

Using this to apply an infinitesimal gauge transformation, g → g+Ag− gĀ (where

A is some element of the Lie algebra) to some operator X, we get the following Ward

identity
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δ〈X〉 =
i

2π

∮
dzAa〈JaX〉 − i

2π

∮
dz̄Āa〈J̄aX〉

The transformation properties of the current itself can be found directly from its

definition:

δJ = [A, J ]− k∂zA

Substituting Jb for the operator X in the Ward identity, and combining it with the

above expression yields the following OPE

Ja(z)Jb(w) =
kδab

(z − w)2
+ ifabc

Jc(w)

(z − w)
+ ...

where fabc are the structure constants of the Lie algebra g. The leading order term

has a constant coefficient, and tells us that the currents form a projective representation

of the Lie algebra of LG, the loop group associated with G. Equivalently, we can say

that they form a non-projective representation of the central extension of the Lie

algebra of LG, L̂G. This is very familiar from our quantization of conventional CFTs,

where the Virasoro algebra turns out to be a central extension of the classical conformal

(Witt) algebra. To make the the connection with the Virasoro algebra clearer, we can

perform a mode expansion of the current operators

Ja(z) =
∑
n

z−n−1Jan

Combining this and the OPE, we arrive at the current algebra

[Jan, J
b
m] = ifabcJ

c
n+m + knδabδn+m,0

Thus we see that the central extension of our algebra g has a similar structure

as the Virasoro algebra when expressed in terms of modes. This infinite-dimensional

algebra is the affine Lie algebra ĝk at level k. We see that it reduces to the original,

finite-dimensional Lie algebra g if n = m = 0. Turning global G-invariance into local

G(z)-invariance (which is what is expressed by the mode expansion of J), and taking

into account quantum effects arising from normal ordering and anomalies, we arrive at

a much richer symmetry algebra than we started with in the classical action.

2.1 The Sugawara Construction

One possible lurking issue is that we have not fully demonstrated that this theory

remains conformal after quantization (besides stating without proof that it is an IR

fixed point). If our theory is to have local conformal invariance as do the other 2D

CFTs we have encountered, the modes of the quantum mechanical stress energy tensor

must form a representation of the Virasoro algebra. This turns out to be exactly the
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case. The Sugawara construction allows us to build a stress tensor out of a sum of

current bilinears.

The classical stress tensor can be derived from the classical WZW action by varying

with respect to the background metric, and has the following form:

Tcl(z) =
1

2k

∑
a

(JaJa)(z)

Let’s assume that we can indeed build a stress tensor with a similar form for the

quantum theory. We will start with

T (z) = γ
∑
a

(JaJa)(z)

where normal ordering is implied and we will fix γ by finding the TT OPE and

requiring it to have the standard form. γ will thus take quantum effects fully into

account. Using the JJ OPE as well as the following relation

∑
b,c

fabcfdbc = 2gδad

where g is the dual Coxeter number of the group, we arrive at

γ =
1

2(k + g)

This also tells us that our central charge is

c =
kdim(g)

k + g

The intermediate TJ OPE also tells us that J is a Virasoro primary field with

dimension 1. The remarkable thing about this Sugawara construction is that, starting

with our affine current algebra, we were able to construct Virasoro algebra generators by

taking bilinear combinations of currents. Intuitively we should think that the Virasoro

algebra is somehow smaller than the current algebra. More specifically, it turns out

that the Virasoro algebra is actually part of the universal enveloping algebra of ĝk.

The full algebra V ir n ĝk can be summarized by the following Lie bracket relations:

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0

[Ln, J
a
m] = −mJan+m

[Jan, J
b
m] = ifabcJ

c
n+m + knδabδn+m,0

It should be noted that ĝk is not completely a symmetry of the theory, but it can be

used to generate the full Hilbert space of physical states, in the same way we generate

states with the Virasoro algebra.
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3 Moving to 3D

We will now review the quantization of a Chern-Simons theory on a compact 2D spatial

manifold. Our space-time manifold will have the form M× R where, again, M is a

compact 2D manifold (e.g. the 2-torus), and R parameterizes time. A is a 3-component

g-valued gauge field in a unitary representation of the Lie algebra, g. We can write

this action in a completely coordinate independent way with differential forms:

SCS =
k

4π

∫
M
Tr(AdA+

2

3
A3)

Where all products are wedge products. Here the metric independence of the theory

is manifest. The sourceless stress energy tensor therefore vanishes, telling us that our

theory is completely invariant under space-time transformations and can therefore be

called topological, i.e. independent of local geometry.

Let us look into the gauge structure of the classical action. Under a gauge trans-

formation Aµ → g−1Aµg + g−1∂µg, our action changes as follows:

δS =
k

4π

∫
dM

Tr(δAA) +
k

2π

∫
M
Tr(δAF )

The first term is purely a boundary term, which does not matter for us. The second

term is a constraint on the classical field values. It tells us that although our theory

does not have a Hamiltonian, the symplectic structure of the classical theory is not

totally trivial.

The second term becomes

1

24π2
Tr(g−1dg)3

which is exactly the Wess-Zumino term, indicating that the Chern-Simons action

is sensitive to large gauge transformations in a similar way to the WZW action.

Thus, the action of our Chern-Simons gauge theory is not gauge-invariant. However,

since the change induced in the action by a gauge transformation is always integral,

our partition function remains gauge-invariant if k, the level, is an integer. This

term thus tells us about, π3(G), the third homotopy group of our Lie group manifold.

Since we are restricting ourselves to a compact groups, it will always be the case that

π3(G) = Z. This will turn out to be the same k as in the WZW action. The 1-cocycle

transformation property of the WZW action will end up being required of the physical

wave functions of the Chern-Simons theory.

The classical equations of motion for a sourceless Chern-Simons theory in coordinate-

free notation are

dA+A2 = F = 0

which are trivially solved by pure gauge, flat connections, Aµ = g−1∂µg.
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3.1 Quantizing Chern-Simons Theory

Since the Chern-Simons action is first order in time derivatives, it has no Hamiltonian.

Naively we might be temped to say the quantum mechanical theory is thus trivial.

However, in quantizing the theory, we inherit both the canonical form of the phase

space manifold:

ω = − k

4π

∫
Tr(δAδA)

as well as a constraint given by recognizing that A0 is simply a Lagrange multi-

plier. Decomposing the field into space and time components, A = Ã+A0, makes the

constraint obvious:

S = − k

4π

∫
Tr(Ã∂tÃ) +

k

2π

∫
Tr(A0(dÃ+ Ã2))

Thus, we must quantize the Poisson bracket of the theory, fix the gauge (since A0

is completely redundant), and impose the following constraint:

dÃ+ Ã2 = 0

This constraint is simply the spatial equation on motion, known as the Gauss-law

constraint for obvious reasons. This constraint restricts us classically to the space of flat

(pure gauge) connections. However, we must be careful when imposing this constraint.

It turns out that because of operator-ordering ambiguity, it matters whether we impose

the constraint and then quantize the restricted phase space, or we quantize the full

space and then impose the constraint. We we follow the second procedure so as to

avoid the ordering ambiguity.

Let us begin the quantization procedure. Referring back to our action decomposed

into time and space components, we can pick the axial gauge, A0 = 0, for the Lagrange

multiplier A0. However, this does not mean we can ignore the Gauss law constraint

that A0 enforces in the action. We will implement that later once we construct our

canonical operators. After fixing the gauge, we have the following action:

k

8π

∫
M
εijȦaiA

a
j

where we have used the orthogonality of the trace on the Lie algebra basis, Tr(T aT b) =
δab

2 , to write the action in terms of the coefficients of the generators. We can extract

the Poisson bracket of this theory quite easily:

{Aai (x), Abj(y)} = εijδ
abδ2(x− y)

promoting this to a Dirac bracket and normalizing by k we get
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[Aai (x), Abj(y)] =
2πi

k
εijδ

abδ2(x− y)

where the components of A are now operators, of course. We will transform to

complex coordinates, z, z̄, and one can verify that the commutator remains essentially

the same:

[Aaz(z1), Abz̄(z2)] =
2πi

k
δabδ2(z1 − z2)

To obtain a Schrodinger representation of these operators, we will arbitrarily pick

A1 to be our coordinate and A2 to be the conjugate momentum. That is, A2 will act

on position space wave functionals by functional differentiation by A1.

Aaz̄Ψ(Abz) = − i2π
k

δ

δAaz(x)
Ψ(Abz)

We can easily verify that this representation of the operators obeys the commutation

relation.

Now our field strength becomes (temporarily suppressing gauge bundle indices)

Fz,z̄ = ∂zAz̄ − ∂z̄Az + [Az, Az̄]

This generates the gauge transformations, U(g) = ei
∫
ωF , where ω is a vector of

parameters that exponentiate the Lie algebra to the group element g. We can check

that F does indeed induce a representation of the group via

U(g1)U(g2) = U(g1g2)

The full transformation U(g) must therefore act as the identity on physical states,

meaning that F must annihilate them:

F |ψ〉 = 0

In our position space representation, this condition simply gives us a functional

differential equation:

(
∂
δ

δAz
+
[
Az,

δ

δAz

]
− ik

2π
∂̄Az

)
Ψ(Az) = 0

Though this equation might seem somewhat opaque, a bit of manipulation will

bring it into a familiar form. First, we assume that up to normalization, the wave

function has the form Ψ[Az] = exp(iW [Az]), where W is a functional of A. Then we

bring back our group indices and use our canonical commutation relations to get:

(δac∂ + fabcAbz)
δW (Az)

δAcz
Ψ = − k

4π
∂AaΨ
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Comparing this result to the previous section, this turns out to be exactly the

form of the differential equation satisfied by the generating functional for Kac-Moody

current correlators.

Ψ[Az] =

∫
DgeiSWZW+ik

∫
M

d2z
4π

TrAzg−1∂̄g

or

Ψ[Az] =

∫
DgeiSWZW+i

∫
M

d2z
4π

Aaz J̄
a

4 WZW-CS Correspondence

Reiterating the result of the previous section, we found that physical Chern-Simons

wave functionals quantized on an arbitrary closed 2D manifold are identical to the

WZW path integral generating functionals. This means that by taking functional

derivatives of Ψ[A] with respect to A we can calculate arbitrary n-point functions of

the current operators. For example, we can calculate the 2-point current correlator as

follows:

〈J̄a(z)J̄b(w)〉 ∼ δ

δAa(z)

δ

δAb(w)
Ψ[Az] ∼

kδab

(z − w)2

This agrees with our OPE (by design). Next we can calculate something more

complicated, like the 3-point function:

〈J̄a(z)J̄b(w)J̄c(x)〉 ∼ δ

δAa(z)

δ

δAb(w)

δ

δAc(x)
Ψ[Az] ∼

ikfabc

(z − w)(z − y)(w − y)

One can verify that this agrees with the original OPE. We can easily take this to

higher order, but the correlation functions rapidly become very complicated. They all,

however, retain the expected transformation properties under conformal transforma-

tions.

4.1 Adding Sources

Finally, we can see what happens if we add sources to our Chern-Simons Lagrangian.

The source term has the form

i

∫
dt
∑

α
T aαA

a
0

where the T s are the Lie algebra elements. This corresponds to inserting stationary

charges in the Chern-Simons theory. They can also be thought of as timelike Wilson

lines. Each charge transforms under some representation of G, and the resulting Hilbert
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space becomes the direct product of the space of sourceless wave functionals with the

representation spaces of all of the N inserted charges. We can see this by noting that

the Gauss law constraint is altered to be

k

4π
F (z)Ψ =

N∑
α

ρα(T a)δ2(z − zα)Ψ

where ρα(T a) is the matrix corresponding to the generator T a in the representation

under which charge α transforms. Reevaluating our functional differential equation for

Ψ[A], we end up with

Ψ[A; z1, z2, ..., zN ] =

∫
Dgφ1(z1)φ2(z2)...φN (zN )eiSWZW+i

∫
M

d2z
4π

Aaz J̄
a

Here φα(zα) = e
−i

∫
dtρ

α
(Taα)Aa0 . i.e. each φ is an operator transforming under a par-

ticular representation of the gauge group. Our sourced Chern-Simons wave functional

corresponds to the expectation value of the product of these operators in the dual WZW

model. However, the fields transforming under the representations of the gauge group

correspond precisely to the Kac-Moody primary fields (and thus the Virasoro primary

fields) of the WZW model. Thus, there is a direct correspondence between primary

fields in the WZW model and the Wilson lines in the Chern-Simons theory. Since the

Wilson operators are the only gauge-invariant observables in the Chern-Simons the-

ory, it follows that we can calculate the expectation values of any physical operator in

Chern-Simons theory by calculating the expectation value of primary fields in a WZW

model.
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