
PHYS 483: String Theory I Problem Set 1 Solutions

Grading.

The maximum score on this problem set was 10 points
problem · 6 problems = 60 points.

Email cferko@uchicago.edu with questions or corrections.

Exercise 1. 10 points
Take the action for a point particle with dynamical einbein e(τ) and X(τ) fields:

S =
1

2

∫
dτ
(
e−1ẊµẊνηµν − em2

)
. (1)

Find the equations of motion. Integrate out e and recover the relativistic point particle action
discussed in lecture.

Solution 1.
For each independent field φ(τ) on the worldline, the Euler-Lagrange equation is

d

dτ

(
∂L

∂φ̇

)
=
∂L

∂φ
, (2)

where an overdot represents differentiation with respect to τ .

First apply equation (2) to the einbein φ(τ) = e(τ), which gives

∂L

∂e(τ)
= −Ẋ

µẊνηµν
e(τ)2

−m2 = 0, (3)

since the Lagrangian is independent of ė(τ).

Likewise, when we let φ(τ) = Xα(τ), the Euler-Lagrange equation (2) yields

d

dτ

(
e−1Ẋα

)
= 0, (4)

where Ẋα = Ẋβηαβ .

Next, we “integrate out” the field e(τ), which means to solve its equation of motion and then
substitute back into the action. Solving equation (3) gives

e(τ) =

√
−Ẋ

µẊµ

m2
, (5)

where we take the positive square root since, morally, e(τ) =
√
−gττ is a frame field on the worldline

and should preserve orientation.

Now (5) can be substituted back into (1) to find

S =
1

2

∫
dτ

ẊµẊµ

(
−Ẋ

νẊν

m2

)−1/2
−m2

(
−Ẋ

νẊν

m2

)1/2


=
1

2

∫
dτ

(
−m

√
−ẊµẊµ −m

√
−ẊµẊµ

)
= −m

∫
dτ

√
−ẊµẊµ

= Spp. (6)

We see that the einbein point particle action is classically equivalent to the ordinary point particle
action which measures the invariant length of the worldline.
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Exercise 2. Polchinski 1.1 10 points
(a) Show that in the nonrelativistic limit the action Spp has the usual nonrelativistic form, kinetic
energy minus potential energy, with the potential energy being the rest mass.

(b) Show that for a string moving nonrelativistically, the Nambu-Goto action reduces to a kinetic
term minus a potential term proportional to the length of the string. Show that the kinetic energy
comes only from the transverse velocity of the string. Calculate the mass per unit length, as
determined from the potential term and also from the kinetic term.

Solution 2.
(a) Painful though it may be, we should now re-introduce factors of c.

Let the position of our particle be Xµ(τ) =
(
ct(τ), x1(τ), · · · , xD−1(τ)

)
so

Ẋµ(τ) =

(
c
dt

dτ
,
dx1

dτ
, · · · , dx

D−1

dτ

)
. (7)

We must make a gauge choice for the worldline parameter τ . For instance, we might choose static
gauge τ = t. Alternatively, to make contact with the usual treatment of special relativity, we

could let τ be proper time, so the quantity dt
dτ is γ =

(
1− v2

c2

)−1/2
. With this choice, in the non-

relativistic limit, dt
dτ = γ = 1 + O

(
v2

c2

)
, so this is actually equivalent to static gauge to required

order in v
c .

With either gauge choice for τ , we find

ẊµẊµ = −c2 + |~v|2 +O
(
v2

c2

)
, (8)

where ~v is the spatial vector
(
dx1

dt , · · · ,
dxD−1

dt

)
with norm |~v| ≡ v.

The point particle action, to required order in v
c , becomes

Spp ≈ −mc
∫

dt

√
c2 − |~v|2

≈ −mc2
∫

dt

(
1− 1

2

|~v|2

c2

)
, (9)

where we have applied the Taylor expansion

(1 + )
n

= 1 + n +O
(

2
)

(10)

to the small quantity = v
c .

We then see that

Spp ≈
∫

dt

(
1

2
m |~v|2 −mc2

)
. (11)

This is the time integral of the classical kinetic term, 1
2m |~v|

2, minus a “potential” term mc2 arising
from the relativistic rest energy.

Calling this a “potential” is a bit misleading, though, since it is a total time derivative which doesn’t
affect the equations of motion.

(b) The Nambu-Goto action is

SNG = − 1

2πα′

∫
d2σ

√
−dethab, (12)

where hab is the pullback of the flat Minkowski metric in spacetime, defined by

hab = ∂aX
µ∂bX

νηµν . (13)
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As in part (a), we will re-introduce factors of c, writing the embedding coordinatesXµ = (ct, x1, · · · , xD−1).
Then the elements of hab are

hττ = ẊµẊµ = −c2
(
dt

dτ

)2

+ |~v|2 ,

hστ = hτσ = ẊµX ′µ = −c dt
dτ

dt

dσ
+ ~v · d~x

dσ
,

hσσ = X ′µX ′µ = −c2
(
dt

dσ

)2

+

∣∣∣∣d~xdσ
∣∣∣∣2 .

(14)

As usual, we have defined Ẋµ = ∂Xµ

∂τ , and X ′µ = ∂Xµ

∂σ , and written the quantities ~v and ~x to
denote the spatial vector parts of Ẋµ and Xµ, respectively.

Now we will express the quantity
√
−dethab appearing in the Nambu-Goto action in terms of the

matrix elements in (14). This gives√
− dethab =

√
− (hττhσσ − h2τσ)

=

√√√√(−c dt
dτ

dt

dσ
+ ~v · d~x

dσ

)2

−

(
−c2

(
dt

dτ

)2

+ |~v|2
)(
−c2

(
dt

dσ

)2

+

∣∣∣∣d~xdσ
∣∣∣∣2
)
. (15)

To proceed, we must make a gauge choice as in part (a) – that is, we should spend our reparame-
terization invariance to simplify (15) and compare it to the classical stretched string.

First, let’s make the usual static gauge choice for time: X0 = cτ = ct, or t = τ . (I am setting
R = 1 in the form of static gauge used by Polchinski, t = Rτ .)

We are free to choose one of our spatial coordinates, say X1 = x1 ≡ x, to parameterize the
longitudinal direction along the string. This is allowed for any motion in which X1 is an increasing
function along the string, but in the non-relativistic limit with small oscillations, we may always
rotate coordinates so that this is true. Hence we will take

X1 = x =
`σ

π
, (16)

which has been normalized for a string of length ` and σ ∈ [0, π], appropriate for an open string.

The other embedding functions X2, · · · , X24 therefore represent the coordinates transverse to
the string, and are functions of X0 = t = τ and X1 = x = `σ

π . To emphasize that they are
transverse, I will re-label these coordinates as Y i and use the vector notation ~Y ≡

(
X2, · · · , X24

)
≡(

Y 2, · · · , Y 24
)
.

Finally, we take the non-relativistic limit, which amounts to∣∣∣∣∣∂~Y∂x
∣∣∣∣∣� 1, and (17)∣∣∣∣∣1c ∂~Y∂t
∣∣∣∣∣� 1. (18)

The assumption (18) is simply that the transverse motion of the string is much slower than the
speed of light. The assumption (17) is that the spatial gradient of the stretched string is small;
one can think of it as a small-amplitude limit obtained via our choice of parameterization.

Using these assumptions, and our gauge choice, the expression (15) becomes

√
−dethab ≈

√(
1− 1

c2

(
∂t~Y

)2)(
1 +

(
∂x~Y

)2)
. (19)

As in part (a), we may apply the Taylor expansion (10) to (19) to find√
−dethab ≈ 1− 1

2c2

(
∂t~Y

)2
− 1

2

(
∂x~Y

)2
. (20)
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Finally, we will replace this expression (20) for
√
−dethab in the Nambu-Goto action. To make

the comparison with the non-relativistic case clearer, I will also define the string tension

T0 =
1

2πα′
, (21)

which allows us to write

SNG =

∫
dt

∫ `

0

dx

(
−T0 +

1

2

T0
c2

(
∂t~Y

)2
− T0

2

(
∂x~Y

)2)
. (22)

You may recall from a course on waves and vibrations that the action for a classical, non-relativistic,
massive string of tension T0 and linear mass density µ0 is

Snon-relativistic string =

∫
dt

∫ `

0

dx

1

2
µ0

(
∂~Y

∂t

)2

− 1

2
T0

(
∂~Y

∂x

)2
 , (23)

where x is the coordinate pointing tangentially along the string and ~Y represents the transverse
coordinates.

Thus we see that the Nambu-Goto action reduces, in the non-relativistic limit, to the same action
as that of an ordinary vibrating string (up to a total derivative term, −T0`, which does not affect
the equations of motion). Indeed, comparing (23) to (22), we see that the mass per unit length of
the Nambu-Goto string is

µNG =
T0
c2
, (24)

which confirms our intuition that the total derivative term,

−T0` = −
(
T0
c2

)
`c2 = − (µNG`) c

2 = −mNGc
2, (25)

is the “potential” due to the mass-energy of the string.

The Nambu-Goto string is sometimes said to be “massless”, in the sense that it has no intrinsic rest
mass – all of the non-kinetic mass-energy (25) comes from the potential energy due to stretching
against the tension T0.
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Exercise 3. Polchinski 1.3 10 points
For world-sheets with boundary, show that

χ =
1

4π

∫
M

dτ dσ (−γ)
1/2

R+
1

2π

∫
∂M

ds k (26)

is Weyl-invariant1. Here ds is the proper time along the boundary in the metric γab, and k is the
geodesic curvature of the boundary,

k = ±tanb∇atb, (27)

where ta is a unit vector tangent to the boundary and na is an outward pointing unit vector
orthogonal to ta. The upper sign is for a timelike boundary and the lower sign for a spacelike
boundary.

Solution 3.
Consider a Weyl transformation which sends

γab → γ̃ab = e2ω(σ,τ)γab (28)

for some function ω(σ, τ) on the worldsheet.

We need to determine how each of the objects appearing in the definition (26) of χ transforms
under a conformal change (28). I often refer to this Wikipedia section when considering geometric
data under conformal maps. It tells us that, under a re-scaling (28) in n = 2 dimensions, the Ricci
scalar transforms as

R −→ R̃ = e−2ω (R− 2∇µ∂µω) , (29)

where ∇µ is the covariant derivative with respect to the old metric.

Likewise, since we are in two dimensions, the measure transforms as√
−det (γab) −→

√
−det (e−2ωγab)

=
√
−e−4ω det (γab)

= e−2ω
√
−det (γab), (30)

since det (cMab) = cn det (Mab) for any n × n matrix Mab (by the linearity of the determinant in
each of the n rows or columns).

Alternatively, you could use Polchinski’s equation (1.2.31), which tells you that

(−γ̃)
1/2

R̃ = (−γ)
1/2 (

R− 2∇2ω
)
, (31)

rather than using the two separate results above.

With these formulas in hand, we can handle the transformation of the first term of (26), since

1

4π

∫
M

dτ dσ (−γ)
1/2 (

R− 2∇2ω
)

=
1

4π

[(∫
M

dτ dσ (−γ)
1/2

R

)
− 2

(∫
M

dτ dσ ∂a
(
∇a
√
−γω

))]
,

(32)

where we have used the result2

∇mV m =
1√
−γ

∂m
(
V m
√
−γ
)
. (33)

In the closed string case, the second term in (32) vanished because it is the integral of a total
divergence and we had no boundary. But in the open string case, the worldsheet does have a
boundary ∂M ; hence when we apply Stokes’ theorem, it reduces to a surface term

− 1

2π

∫
∂M

ds na∂aω, (34)

1Note that (26) is the Gauss-Bonnet theorem, which relates the Euler characteristic χ – a famous topological
invariant – to an integral involving geometrical data about curvature. In short, topology =

∫
geometry.

2Also on the Wikipedia page, under the section “Gradient, divergence, Laplace-Beltrami operator”.
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which we will need to cancel using the second term of (26).

Thus let’s think about the transformation properties of the geodesic curvature k on the boundary.
This k is defined in terms of unit vectors ta and na on the boundary, but the notion of “unit vector”
is metric-dependent: the condition

tata = tatbγab = ∓1 (35)

defines a unit vector (upper sign for a timelike boundary, lower sign for a spacelike boundary) with
respect to the old metric γab, but we need

t̃at̃bγ̃ab = ∓1 (36)

for a unit vector with respect to the new metric γ̃ab = e2ωγab. So the unit vectors must each
be re-scaled as ta → e−ωta, na → e−ωna. The versions of these vectors with downstairs indices,
naturally, transform with the inverse factor of e+ω.

Thus the new geodesic curvature is

k̃ = ±t̃añb∇̃at̃b

= ±tanb
(
∂a
(
e−ωtb

)
+ Γ̃bact̃

c
)
. (37)

We will need one more appeal to Wikipedia to see how the Christoffel symbols Γbac transform
under a conformal change:

Γ̃bac = Γbac + δba∂cω + δbc∂aω − γac∂bω. (38)

Thus

Γ̃bact̃
c =

(
Γbac + δba (∂cω) + δbc∂aω − γac∂bω

) (
e−ωtc

)
= Γbac

(
e−ωtc

)
+ δba (∂cω)

(
e−ωtc

)
+
(
e−ωtb

)
(∂aω)− γac

(
∂bω

) (
e−ωtc

)
. (39)

By assumption nbtb = 0 since the unit tangent and unit normal are orthogonal. So after contracting
(39) against nb, the third term vanishes. Then k̃ becomes

k̃ = ±tanb
(
∂a
(
e−ωtb

)
+ Γ̃bact̃

c
)

= ±tanb
(
∂a
(
e−ωtb

)
+ Γbac

(
e−ωtc

)
+ δba (∂cω)

(
e−ωtc

)
− γac

(
∂bω

) (
e−ωtc

))
= e−ωk ± tanb

(
−e−ω (∂aω) tb + δba (∂cω)

(
e−ωtc

)
− γac

(
∂bω

) (
e−ωtc

))
= e−ωk ± e−ωtanb

(
−γac

(
∂bω

)
tc
)
. (40)

In the last step, we have again used tana = 0. Now we may use tatcγac = ∓1 to simplify the
remaining term – tracking signs to find (∓)(±)(−1) = +1 – and conclude that

k̃ = e−ω (k + na∂aω) . (41)

Finally, we return to the boundary term of (26). We know how k transforms, and we know that
ds =

√
γabdxadxb changes as ds −→ d̃s =

√
e2ωγabdxadxb = eωds, so

1

2π

∫
∂M

ds k −→ 1

2π

∫
∂M

d̃s k̃

=
1

2π

∫
∂M

eωds
(
e−ω (k + na∂aω)

)
=

(
1

2π

∫
∂M

ds k

)
+

(
1

2π

∫
∂M

ds na∂aω

)
. (42)

Happily, the boundary piece picks up precisely the term needed to cancel (34) arising from the
transformation of the bulk piece. We conclude that the quantity χ is also conformally invariant in
the open string case, as desired.
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Exercise 4. Polchinski 1.5 10 points
Extend the sum (1.3.32) to the ‘twisted’ case

∞∑
n=1

(n− θ) (43)

with θ a constant. That is, kσ = (n− θ)π/`. The answer is given in eq. (2.9.19). You should find
that the cutoff-dependent term is independent of θ.

Solution 4.
Following Polchinski’s treatment of the θ = 0 case, we will regulate this divergent sum by intro-
ducing an exponential smoothing factor:

∞∑
n=1

(n− θ) −→
∞∑
n=1

(n− θ) exp

(
−εγ−1/2σσ

(n− θ)π
`

)
. (44)

First, let’s remind ourselves of the strategy: because the exponential decays so quickly, the sum
on the right side of (44) will converge for any finite ε > 0. But on the other hand, as we take
ε → 0+, the terms converge pointwise to those of the original, un-regulated sum. Therefore, we
might hope that summing the regulated expression (44) and taking ε→ 0+ in the result will give
us data about the un-regulated sum. Unsurprisingly, though, taking ε → 0+ gives a divergence.
Thus we will retreat to “subtracting off the infinite piece” of the resulting divergent expression,
hoping that the finite piece has physical meaning.3

Thus consider the general smoothed sum

∞∑
n=1

(n− θ) e−c(n−θ)ε (45)

where c is some constant, which we will later set to γ−1/2σσ
π
` , and ε is a small parameter.

We use something similar to the “Feynman trick” of differentiating under an integral, but here we
differentiate under a sum. That is, note that we may formally re-write each term in the sum (45)
as

(n− θ) e−c(n−θ)ε = −1

c

d

dε

(
e−c(n−θ)ε

)
. (46)

If we believe that differentiation should commute with divergent series summation, we find

∞∑
n=1

(n− θ) e−c(n−θ)ε =

∞∑
n=1

(
−1

c

)
d

dε

(
e−c(n−θ)ε

)
=

(
−1

c

)
d

dε

∞∑
n=1

(
e−cnεecθε

)
=

(
−1

c

)
d

dε

[
ecθε

∞∑
n=1

e−cnε

]
. (47)

Since cnε > 0 the expression
∑∞
n=1 e

−cnε is a geometric series whose sum is given by

∞∑
n=1

e−cnε =

∞∑
n=1

(
e−cε

)n
=

e−cε

1− e−cε
=

1

ecε − 1
. (48)

3Admittedly, this sentence sounds extremely unconvincing, especially to a mathematician. If you are skeptical
about the meaningfulness of the finite piece, or wonder whether it depends on the choice of smoothing function,
perhaps read this blog post by Terry Tao.
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Using this in (47),

∞∑
n=1

(n− θ) e−c(n−θ)ε =

(
−1

c

)
d

dε

[
ecθε

ecε − 1

]
(49)

=

(
−1

c

)(
− cecε+cθε

(ecε − 1)2
+

cecθεθ

ecε − 1

)
=

ecε+cθε

(ecε − 1)2
− θecθε

ecε − 1
.

=
ecε+cθε − θecθε(ecε − 1)

(ecε − 1)2
(50)

Now we take ε → 0 and extract the finite piece. There are a few ways to do this; I think it’s
instructive to see that they agree:

1. First way. The simplest strategy – which suffices for full credit on the problem set – is to
ask Stephen Wolfram:

2. Second way. If we want to see the result analytically, we’ll need to get our hands dirty: one
must find the divergent terms in the Laurent series of (50), subtract off the divergences to
give a regular expression, and then take ε→ 0 in the result to find the finite part.

It’s slightly easier to find the Laurent series for the quantity ecθε

ecε−1 in the first line (49), before
differentiating. We see that, near ε = 0, this expression blows up like 1

ε :

ecθε

ecε − 1
=

1 + cθε

(1 + cε)− 1
+O(1)

=
1

cε
+O(1). (51)

Thus, the expression obtained by subtracting off the 1
cε divergence is purely regular and has

a Taylor series around ε = 0. We find the leading terms in this expansion as

ecθε

ecε − 1
− 1

cε
=
cεecθε − (ecε − 1)

cε (ecε − 1)

=

[
cεecθε − (ecε − 1)

cε (ecε − 1)

]
ε=0

+

[
d

dε

(
cεecθε − (ecε − 1)

cε (ecε − 1)

)]
ε=0

ε+O(ε2). (52)

The first term, in the limit near ε = 0, is given by

lim
ε→0

[
cεecθε − (ecε − 1)

cε (ecε − 1)

]
= lim
ε→0

[
cε
(
1 + cθε+ 1

2c
2θ2ε2

)
−
(
cε+ 1

2c
2ε2
)

c2ε2

]

= lim
ε→0

[
c2ε2

(
θ − 1

2

)
c2ε2

]

= θ − 1

2
. (53)
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The second piece, again near ε = 0, is[
d

dε

(
cεecθε − (ecε − 1)

cε (ecε − 1)

)]
ε=0

= lim
ε→0

[
c2ε2ecθε (θecε − ecε − θ) + (ecε − 1)

2

cε2 (ecε − 1)
2

]

= lim
ε→0

{
1

c2ε2(cε)2

[

c2ε2
(

1 + cθε+
1

2
c2θ2ε2

)(
(θ − 1)

(
1 + cε+

1

2
c2ε2

)
− θ
)

+

(
cε+

1

2
c2ε2 +

1

6
c3ε3

)2
]}

(54)

In the numerator, the terms proportional to c2ε2 cancel between the first and second terms,
and likewise with the c3ε3 pieces. At order ε4 in the numerator, we get 1

2c
4ε4
(
θ2 − θ − 1

)
in

the first term and 7
12c

4ε4 in the second term.

(Note that the factor of 7
12 came from expanding

(
cε+ 1

2 (cε)
2

+ 1
6 (cε)

3
)2

, which has two
contributions to the ε4 term: one when we get two copies of the middle term, and one when
we get one copy of the first term and one copy of the third.)

Canceling with the c3ε4 in the bottom, we find[
d

dε

(
cεecθε − (ecε − 1)

cε (ecε − 1)

)]
ε=0

= c

(
1

12
− θ

2
+
θ2

2

)
. (55)

Putting this together, (49) is
∞∑
n=1

(n− θ) e−c(n−θ)ε =

(
−1

c

)
d

dε

[
ecθε

ecε − 1

]
=

(
−1

c

)
d

dε

[
1

cε
+

(
θ − 1

2

)
+ cε

(
1

12
− θ

2
+
θ2

2

)
+O(ε2)

]
=

1

c2ε2
+

(
− 1

12
− θ

2
+
θ2

2

)
+O(ε). (56)

Note that one could instead analyze the expression (50), after differentiating, which gives a cal-
culation similar to the second way above (one expands the numerator and denominator of (50) to
fourth order in ε, perhaps after subtracting off the 1

ε2 pole if you’d like, and then finds the same
result).

Regardless of which approach you prefer, we conclude
∞∑
n=1

(n− θ)e−c(n−θ)ε =
1

c2ε2
+

1

12

(
−1 + 6θ − 6θ2

)
+O(ε), (57)

or, extracting the regular part when ε→ 0,

reg

[ ∞∑
n=1

(n− θ)

]
=

1

12

(
−1 + 6θ − 6θ2

)
. (58)

The cutoff-dependent first term, after replacing c = γ
−1/2
σσ

π
` , is independent of θ, as expected. As

in the un-twisted sum, this term is proportional to the length of the string and can be canceled by
adding a cosmological-constant-style counterterm of the form

∫
d2σ
√
−γ.

Our result (58) also agrees with Polchinski’s equation (2.9.19), after some algebra:

1

24
− 1

8
(2θ − 1)

2
=

1

24
− 1

8

(
4θ2 − 4θ + 1

)
=

=
1

24
− 3

24
+
θ

2
− θ2

2

=
1

12

(
−1 + 6θ − 6θ2

)
. (59)

9
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In the following exercises one has the usual open or closed string boundary conditions (Neumann
or periodic) on Xµ for µ = 0, · · · , 24 but a different boundary condition on X25. Each of these
has an important physical interpretation, and will be developed in detail in chapter 8. Find the
mode expansion, the mass spectrum, and (for the closed string) the constraint from σ-translation
invariance in terms of the occupation numbers. In some cases you need the result of exercise 1.5.

Note: In the solutions to Polchinski 1.8 and 1.9, I will set ` = 2π to avoid cluttering the formulas.

Exercise 5. Polchinski 1.8 10 points
Closed strings with

X25 (τ, σ + `) = X25(τ, σ) + 2πR (60)

with R a constant. This is a winding string in a toroidal (periodic) compactification. In this case
p25 must be a multiple of 1/R.

Solution 5.
We recall from lecture that, after using reparameterization invariance to put the worldsheet metric
into conformal gauge γab = e2φηab and then using Weyl invariance to set φ = 0, the equations of
motion for the string embedding coordinates Xµ (σ, τ) reduce to the simple wave equations(

∂2

∂τ2
− ∂2

∂σ2

)
Xµ = 0. (61)

(Of course, this must be supplemented by the constraints arising from the vanishing of the stress

tensor, namely ẊµX ′µ = 0 =
(
Ẋµ +Xµ′

)2
, although this will not be relevant here.)

We know that solutions to the wave equation (61) have the general form

Xµ(σ, τ) = Xµ
L(τ + σ) +Xµ

R(τ − σ). (62)

For the coordinates X0, · · · , X24, we have the usual periodic boundary condition Xµ(σ+ 2π, τ) =
Xµ(σ, τ), which is solved by the familiar mode expansion

Xi (τ, σ) = xi + α′piτ + i

√
α′

2

∑
n 6=0

e−inτ

n

(
αine

inσ + α̃ine
−inσ) , (63)

where i = 0, · · · , 24.

Now we consider X25, which satisfies the new boundary condition

X25(τ, σ + 2π) = X25(σ, τ) + 2πR. (64)

I claim that this boundary condition still admits a similar expansion, albeit with a new term linear
in σ. Let’s show this explicitly.

Let σ± = τ ± σ. Then the boundary condition (64) can be written as

X25
L (σ+ + 2π)−X25

L (σ+) = X25
R (σ−)−X25

R (σ− − 2π) + 2πR. (65)

Differentiating both sides with respect to σ+, treated as an independent variable from σ−, gives
X25′
L (σ+ + 2π) = X25′

L (σ+), which means that the derivative X25′
L is a periodic function of its

argument. Similarly, differentiating both sides with respect to σ− shows that X25′
R is a periodic

function of its argument.

If X25′
L and X25′

R are periodic functions of σ+ and σ−, respectively, then they can be written as
Fourier expansions:

X25′
L (σ+) =

∞∑
n=−∞

α̃25
n e
−inσ+

,

X25′
R (σ−) =

∞∑
n=−∞

α25
n e
−inσ− .

(66)

10



PHYS 483: String Theory I Problem Set 1 Solutions

We integrate the two equations in (66) to obtain

X25
L (σ+) =

1

2
x250 +

1

2
α′p25L σ

+ + i

√
α′

2

∑
n 6=0

α̃25
n

n
e−inσ

+

,

X25
R (σ−) =

1

2
x250 +

1

2
α′p25R σ

− + i

√
α′

2

∑
n 6=0

α25
n

n
e−inσ

−
.

(67)

I have allowed the momenta p25L and p25R to be different; as we will see, the boundary condition
actually requires this to be the case. If we plug our left-moving and right-moving mode expansions
(67) into the boundary condition, written in the form (65), we find

1

2
α′p25L

(
σ+ + 2π

)
− 1

2
α′p25L σ

+ =
1

2
α′p25R σ

− − 1

2
α′p25R

(
σ− − 2π

)
+ 2πR.

=⇒ p25L = p25R +
2

α′
R. (68)

Aha! The left-moving and right-moving momenta differ precisely because of the winding around
the compact coordinate X25. Now we add X25

L and X25
R to obtain the full mode expansion for

X25, namely

X25(τ, σ) = x250 +
1

2
α′
(
p25R (τ − σ) +

(
p25R +

2

α′
R

)
(τ + σ)

)
+ i

√
α′

2

∑
n6=0

e−inτ

n

(
α̃25
n e
−inσ + α25

n e
inσ
)

≡ x250 + α′p25τ +Rσ + i

√
α′

2

∑
n 6=0

e−inτ

n

(
α̃25
n e
−inσ + α25

n e
inσ
)
. (69)

In the last step, I have chosen to call p25R simply p25, since this is the coefficient appearing in the
term of X25 which is linear in τ .

Therefore, we have found that the oscillator expansion for X25 has picked up a term linear in σ,
which guarantees that X25(τ, σ + 2π) = X25(τ, σ) + 2πR.

Quantizing the theory with this new boundary conditions proceeds almost identically to the case
with usual periodic boundary conditions; all that has changed in our mode expansion (69) is the
addition of a commuting number, Rσ, which does not affect the commutation relations of the
modes nor the normal-ordering constant. Thus we promote the Fourier coefficients αn, α̃m to
operators which satisfy [

αim, α
j
n

]
= mδijδm,−n =

[
α̃im, α̃

j
n

]
,[

αim, α̃
j
n

]
= 0. (70)

To find the mass formula, we use the spacetime identityM2 = pµpµ = 2p+p−−pipi, where p− = H

is the Hamiltonian. The momenta pi = p+

`

∫ `
0
dσ
(
∂τX

i(σ, τ)
)
are unchanged by our new boundary

condition, since adding a term linear in σ will not change the derivative of X25 with respect to τ .
Thus we need only find the change in the Hamiltonian,

H =
1

2α′p+

∫ 2π

0

dσ

(
2πα′ΠiΠi +

1

2πα′
∂σX

i∂σX
i

)
. (71)

We see that the ∂σXi∂σX
i term will be changed due to the new term Rσ appearing in our expansion

(69) for X25. With this added term, we find

H =
pipi

2p+
+

1

p+α′

( ∞∑
n=1

(
αi−nα

i
n + α̃i−nα̃

i
n

)
− 2

)
+

R2

2p+α′2
, (72)

where we have used the result that the normal-ordering constant is A = −1 in the critical dimension
D = 26. Recognizing the appearance of the number operators N and Ñ , we find(

M2
)
26d

=
2

α′

(
N + Ñ − 2 +

R2

2α′

)
. (73)

11
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On the other hand, for an observer living in the 25-dimensional space X0, · · · , X24 but who cannot
see the circular dimension X25 (perhaps because R is very small), the mass formulaM2 = 2p+p−−∑24
i=2 p

ipi excludes p25 in the sum of the second term. Such an observer measures

(
M2
)
25d

=
2

α′

(
N + Ñ − 2 +

R2

2α′
+
α′

2

(
p25
)2)

=
2

α′

(
N + Ñ − 2 +

R2

2α′
+
α′n2

2R2

)
, (74)

which makes it clearer that the winding momentum around the circle of radius R and physical
momentum p25 = n

R have similar contributions to the mass. In fact, transforming the radius as
R→ R̃ = α′

R when n = 1 leaves the mass unchanged (this observation leads to T-duality).

Finally, we would like to find the level-matching condition which arises from invariance under
σ-translations. The conserved momentum associated with shifts in σ is

P = −
∫ 2π

0

dσΠi∂σX
i

= −

[ ∞∑
n=1

(
αi−nα

i
n − α̃i−nα̃in

)
+ p25R

]
= −

(
N − Ñ + p25R

)
, (75)

where the extra piece came from differentiating the new Rσ term in X25. Thus the new level-
matching condition is

N − Ñ = p25R
!
= n, (76)

where in the last step we have used that p25 = n
R must be an integer. More generally, if the

boundary condition had been X25(τ, σ + 2π) = X25(τ, σ) + 2πRm for some integer m, we would
have found that N − Ñ = nm.

12
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In the following exercises one has the usual open or closed string boundary conditions (Neumann
or periodic) on Xµ for µ = 0, · · · , 24 but a different boundary condition on X25. Each of these
has an important physical interpretation, and will be developed in detail in chapter 8. Find the
mode expansion, the mass spectrum, and (for the closed string) the constraint from σ-translation
invariance in terms of the occupation numbers. In some cases you need the result of exercise 1.5.

Exercise 6. Polchinski 1.9 10 points
Closed strings with

X25 (τ, σ + `) = −X25 (σ, τ) . (77)

This is a twisted string in orbifold compactification.

Solution 6.
First, we seek the oscillator expansion consistent with the orbifold identification (77). Let’s go
slowly: again, we note that solutions to ∂α∂αX25 = 0 can be written as

X25(τ, σ) = X25
L (σ+) +X25

R (σ−). (78)

Our boundary condition (77) requires

X25
L (σ+ + 2π) +X25

R (σ− − 2π) = −
(
X25
L (σ+) +X25

R (σ−)
)
. (79)

As in problem (1.8), we take derivatives with respect to σ+ and σ−. This yields the two equations

X25′
L (σ+ + 2π) = −X25′

L (σ+) , X25′
R (σ− + 2π) = −X25′

R (σ−). (80)

We see that the derivatives X25′
L and X25′

R reverse sign when their arguments advance by 2π. The
most general function with this property can be written as a sum of exponentials exp (ikσ±) where
k is a half-integer, that is,

X25′
L (σ+) =

√
α′

2

∑
n odd

α̃25
n
2

exp
(
−in

2
σ+
)
,

X25′
R (σ−) =

√
α′

2

∑
n odd

α25
n
2

exp
(
−in

2
σ−
)
.

(81)

Integrating (81), we find

X25
L (σ+) = i

√
α′

2

∑
n odd

2

n
α̃25
n
2
e−i

n
2 σ

+

,

X25
R (σ−) = i

√
α′

2

∑
n odd

2

n
α25
n
2
e−i

n
2 σ
−
.

(82)

Note that, if we had included any constant or linear terms in XL and XR, the boundary condition
(77) would have forced the two contributions to cancel when we sum to get X25 (τ, σ): otherwise we
cannot have X25(τ, σ+ 2π) = −X25(τ, σ). We therefore set these terms equal to zero, without loss
of generality, since we care only about the sum X25 rather than about X25

L and X25
R individually.

Thus, combining the left-moving and right-moving results to form X25(τ, σ) = XL(σ+) +XR(σ−),
we have

X25(τ, σ) = i

√
α′

2

∑
n odd

2

n
e−i

n
2 τ
(
α̃25
n
2
e−i

n
2 σ + α25

n
2
ei
n
2 σ
)
. (83)

Next, we will quantize the theory. The new half-integral modes have the expected commutation
relations, [

α25
n
2
, α25

m
2

]
=
m

2
δm,−n =

[
α̃25
n
2
, α̃25

m
2

]
,[

α25
n
2
, α̃25

m
2

]
= 0. (84)

13



PHYS 483: String Theory I Problem Set 1 Solutions

However, when we compute the normal-ordering constant associated with the ambiguity of operator
ordering in the expression

∑
i6=25

( ∞∑
n=1

αi−nα
i
n

)
+
∑
k odd

α25
− k2
α25
k
2
, (85)

the result will be modified because of the second term, which is now a sum over half-integers.

Thus we will need to compute the sum of all positive half-integers (or, equivalently, half of the
sum of all odd positive integers). For your amusement, I present two ways to do this: the first is
completely non-rigorous but turns out to be correct, and the second uses the results of exercise 1.5

1. The non-rigorous way is to split the sum over all integers into even and odd terms as

∞∑
k=1

k =
∑

k≥1, odd

k +
∑

k≥2 even

k =
∑
k odd

k + 2

∞∑
k=1

k. (86)

But we “know” that
∑∞
k=1 k = − 1

12 , so equation (86) becomes

− 1

12
=
∑
k odd

k − 1

6
, (87)

from which we conclude ∑
k odd

k = +
1

12
, (88)

or, dividing by 2, ∑
k half-integer

k =
1

24
. (89)

You may reasonably question whether this works, since re-arranging the terms of a series is
not guaranteed to preserve its convergence properties (as it turns out, this is allowed for the
regulated sums we consider here).

2. The more rigorous way is to appeal to exercise 1.5, where we showed (in equation (58)) that

∞∑
n=1

(n− θ) =
1

12

(
−1 + 6θ − 6θ2 + · · ·

)
.

Setting θ = 1
2 , this gives us the desired sum over half-integers:

∞∑
n=1

(
n− 1

2

)
=

1

2
+

3

2
+

5

2
+ · · · = 1

12

(
−1 +

6

2
− 6

4

)
=

1

24
. (90)

With the exception of the new normal-ordering constant, the usual analysis of the mass-squared
goes through. One finds

M2 =
α′

2

(
N + Ñ −A− Ã

)
. (91)

The normal-ordering constants A and Ã have contributions from twenty-three directions in the
un-twisted directions, each of which adds the usual 1

2 ·
(
− 1

12

)
, and one contribution from the new

twisted direction, which adds 1
4 ·
(

1
12

)
.

More explicitly, recall that the normal-ordering constant for the integrally-moded fields came from
the ambiguity in the order of operators appearing in the Hamiltonian, namely

A =
1

2

∑
i 6=25,p∈Z

αipα
i
−p +

1

2

∑
k odd

α25
k
2
α25
− k2
. (92)

14
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The commutator of the integrally-moded α’s is [αin, α
j
m] = nδm,−nδ

ij , while the commutator of the
half-integrally-moded α’s is [αik

2

, αj− l
2

] = k
2 δk,−l. So

A =
1

2

∑
i 6=25,p∈Z

n+
1

2

∑
k odd

k

2
. (93)

There are 23 transverse values of i in the first sum, excluding 25, so we get 23 · 12 ·
(
− 1

12

)
. In the

second sum, we get 1
2 times the sum of half-integers, which we’ve shown to be 1

24 . Thus

A = Ã = 23 ·
(
− 1

24

)
+ 1 ·

(
1

48

)
=

15

16
, (94)

and likewise for Ã. So altogether,

M2 =
α′

2

(
N + Ñ − 15

8

)
. (95)

To conclude, we will find level-matching constraint on N and Ñ arising from σ-translation invari-
ance. We compute

P = −
∫ 2π

0

dσΠi∂σX
i

= −

 ∞∑
n=1

∑
i 6=25

(
αi−nα

i
n − α̃i−nα̃in

)
+
∑
k odd

(
α25
−n2

α25
n
2
− α̃25

−n2
α̃25
n
2

) . (96)

Thus the level-matching condition is still

N = Ñ , (97)

although now the occupation numbers N and Ñ include contributions from the half-integrally-
moded oscillators in the 25 direction.
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